
Vulture Combat
Potential Fields, Reinforcement Learning and Bayesian Networks

Applied to Starcraft Broodwar

Blankpage

0 Title page III

Student Report

Department of Computer Science

5. Semester

Subject: Build Intelligent Non-Player Characters (NPCs) for Real-Time strategy Games

Address: Selma Lagerløfts Vej 300

Postcode: 9220 Aalborg East

Telefon: 99 40 99 40

Website: http://cs.aau.dk

Title:
Vulture Combat - Potential Fields, Re-
inforcement Learning and Bayesian Net-
works Applied to Starcraft Broodwar.

Theme:
Machine Intelligence

Projectperiod:
Fall 2011

Projectgroup:
d503e11

Supervisor:
Paolo Viappiani

Project Members:
Anuhi Ruiz Rivera
Dan Duus Thøisen
Daniel Heidemann
Kristian Pilegaard Jensen
Michael Louis Church
Thomas Birch Mogensen

Number of copies: 3

Number of pages: 75

Appendices: 15

Completed: 19-12-2011

Synopsis:

This report will focus on Bayesian networks,

potential fields, and reinforcement learning ap-

plied to a real time strategy game called Star-

craft Broodwar.

The report content is freely accessible, but the publication (with source) may only be made by

agreement with the authors.

http://cs.aau.dk

Blankpage

0 Title page V

Anuhi Ruiz Rivera Dan Duus Thøisen Daniel Heidemann

Kristian Pilegaard Jensen Michael Louis Church Thomas Birch Mogensen

Blankpage

Contents

Contents VII

1 Introduction 1
1.1 Purpose . 1
1.2 Problem Statement . 1
1.3 Overview . 2

2 Analysis 3
2.1 Basic Game Rules . 3
2.2 Important Techniques . 4
2.3 Terran Tactics . 6
2.4 Bot Analysis . 7
2.5 Unit Analysis . 7

3 Design 9
3.1 Bot Managers . 9
3.2 Potential Fields . 10
3.3 Functions for the Potential Fields . 13
3.4 Agent Learning . 15
3.5 Application of Generalization of Q-Learning 20
3.6 Bayesian Networks and Decision Trees 22
3.7 Designing Bayesian Networks for Prediction 23
3.8 Design Summary . 27

4 Implementation 29
4.1 Class BayesianNetwork . 29
4.2 Managers . 30
4.3 Implementing Potential Fields . 34
4.4 Q̂-Learning . 40

5 Tests 45
5.1 Test Without Reinforcement Learning and Potential Fields 45
5.2 Test Using the Potential Fields Without Reinforcement Learning . . 45
5.3 Comparing α and γ Values . 46
5.4 Convergence Analysis . 51
5.5 Spawn Prediction Test . 52
5.6 Build Order Prediction Test . 53

6 Conclusion 55

7 Future work 57
7.1 Future Work on Potential Fields . 57
7.2 Future Work on Reinforcement Learning 57
7.3 Future Work on Prediction Networks 58

VIII CONTENTS

8 Appendices 59
8.1 Picture of a Normal Game . 59
8.2 A9G2 . 60
8.3 A6G4 . 62
8.4 A4G6 . 64
8.5 A2G9 . 66
8.6 Winning Streak . 70
8.7 Reinforcement Learning Field Summary 72

Bibliography 75

Blankpage

Chapter 1

Introduction

In this project we look into the Real Time Strategy game Starcraft Broodwar from
the Machine Intelligence perspective. Starcraft Broodwar is interesting in this field
for several reasons: it requires as much strategy as chess, it has the unknown aspect
of poker, and it is as unpredictable as scrabble. These three factors make it an ideal
game for Machine Intelligence.

Another advantage of Starcraft Broodwar is that it is easy to learn but difficult
to master. The basics of the game are very simple and can be understood in a
matter 30 minutes, but it can take years of intensive training to become a true
professional.

Using a computer to play Starcraft Broodwar is interesting since a computer
exceeds humans in several areas. It will be able to do many calculations during a
game, and be able to control the mouse and keyboard very rapidly. Specially since
these mouse and keyboard movements open the door for some interesting opportu-
nities. A human can only control a limited amount of units or buildings at a time,
but a computer is completely able to control them simultaneously.

Machine Intelligence is interesting in relation to Starcraft Broodwar because we
would be able to make our bot really good at just specific fragments of the game.
These could be:

• Teach it to use just the right strategy at the right time.

• Predict what the other players are during.

• Teach it to control single units in just the right way.

All the above parts make Starcraft Broodwar an interesting game to consider.
We have a lot of different opportunity areas to focus on for the remainder of this
report.

1.1 Purpose

The purpose of this project is to create a computer program that is able to play
a full game of Starcraft Broodwar. The computer should be able to perform tasks
that would be impossible for a human being. It should be able to learn through
trials from its mistakes and improve by using machine intelligence theory.

1.2 Problem Statement

Our goals for this project are to:

• Create an intelligent bot for the game Starcraft Broodwar

2 Introduction 1

• Apply Machine Intelligence theory in the modelling of the bot

• Make a bot that can improve by playing Starcraft Broodwar

1.3 Overview

We will now give a brief overview of the different chapters of the report.

Chapter 2 - Analysis The analysis begins with an introduction to the basic
rules for playing a game of Starcraft Broodwar. Then we go on to explain some of
the most common Terran tactics. We also talk about the importance of information
and the balance between macro and micro. Then we take a look at what Machine
Intelligence can be used to make a bot and look at which aspects of the game can
benefit the most from Machine Intelligence. The final thing will be an analysis of
the different units available for Terran and their strengths.

Chapter 3 - Design In the design chapter we begin by describing the different
criteria we have for our bot. Then we go on to explain how we designed the different
managers we use for various tasks like building and scouting. Then we give an
overview of what potential fields are and how we use them for movement. Afterwards
we describe different kinds of agent learning and how we can use it to improve
potential fields. At the end we talk about Bayesian networks and decision trees to
make predictions and decisions.

Chapter 4 - Implementation In this chapter we begin by looking at how we
implemented Bayesian networks. Then we talk about the implementation of the
managers and explain the most important parts of the code. We then look at
potential fields and the differences between the design and implementation. At the
end we look at how we implemented Q-Learning.

Chapter 5 - Tests First we look at how the built in bot does against itself. Then
we look at how our potential fields do without any learning against the built in bot.
Then we look at how different alpha and gamma values effect the way our bot
learns and how this affect its performance. After this we test the different Bayesian
networks and how they do at predicting the enemy’s spawn, predicting the enemy’s
build order, and the enemies threat level.

Chapter 6 - Conclusion In this chapter we conclude on this project.

Chapter 7 - Future Work This chapter focus on different actions we could take
to improve our work if we had more time.

Chapter 2

Analysis

In this chapter we will define the basic rules of the game and the techniques a player
can use to help him achieve victory. This will help us determine in which ways
we can apply Machine Intelligence theory so the bot can win a game of Starcraft
Broodwar.

2.1 Basic Game Rules

Starcraft Broodwar is a complex game in which a player battles his army against his
opponent’s army. There are many strategies involved in doing this, but the game
can be summarized in some basic concepts.

Before the match starts the player chooses one of three different races: Protoss,
Terran, or Zerg. Even though all of these races are unique with different strategies
and units, the basic techniques of the game remain the same no matter which one
you choose.

The first rule of the game is that if a player loses all of his buildings then he
loses. This means that in order to win against an opponent you must kill his last
building before he kills your last building. The player has to worry about this threat
throughout the entire match.

At the beginning of the game you start out with one building that can only train
the most basic worker unit which can collect resources. Resources are used to buy
buildings, units, and upgrades. It is important to collect as much resources as
possible so you can buy more buildings, units, and upgrades than your opponent.
This can be a difficult task. It is not enough just to get more resources than your
opponent. You need to utilize your resources. Resources that are not being used
for anything are wasted.

In general you want to have a high income but keep a low amount of resources
in reserve. If you have extra resources you need to either buy more buildings, train
more units, or buy upgrades for your army.

In order to destroy your opponent’s buildings you must have an army (or at least
some units). In the beginning of the game you have almost no army and you want
to make your army stronger as the game progresses. It is not good enough to just
have an army, but you must have a better army than your opponent. The optimal
balance in army size is the exact force that is needed to keep you alive and force
the enemy back, if an attack occurs.

Generally there is a trade off between your army and your economy. The larger
the army you have the less you are spending on growing your economy (and vice
versa). If you spend too much on your army but not enough on economy you may

4 Analysis 2

become too far behind later in the game to win. On the other hand if you spend
all of your resources on your economy the enemy army could come and wipe you
out. A picture from the beginning of a normal game can be seen in figure F8-1 in
section 8.1 in the appendix.

2.2 Important Techniques

In this section we will introduce the elements of Starcraft Broodwar which have to
be taken into account in order to win a match. This will give an understanding
of Starcraft Broodwar. We will take a look at build orders, information gathering,
macromanagement, and micromanagement.

2.2.1 Build Orders

A build order is an early game strategy describing the order in which certain build-
ings and units should be produced see reference [1]. The purpose of a build order is
to optimize the player’s economy and to control the timing of units which can give
the player advantages at certain points in the game.

The build order depends on several factors like the specific map played, and the
race the opponent has chosen. Early game scouting(see below) helps determine the
opponent’s build order and so you can counter their strategy.

A build order is most important at the beginning of the game and relies a lot on
timing. The player must choose a spot to build a certain building, ensure a worker
is there to do it, and make sure the player has the required resources. A good player
knows the exact time to do these kinds of actions. He will make worker reach the
construction site at the exact time he gets enough minerals to actually build the
building.

Later in the the game the player must adapt his strategy depending on the
information received about the opponent.

2.2.2 Information Gathering

Every strategy and decision made throughout the game depends on the pieces of
information known in the current moment. From the most basic decisions like
where to build, what to build, and which units to build; to wider decisions like
how to defend, when to attack, or how to counter attack. Everything depends on
the known information. The decision making process begins and grows with the
input information. How the bot obtains pieces of information is just as important
as how it process them. You do not want to waste too many resources finding out
information otherwise you will waste units.

Map Knowledge

During the game many actions have to rely on the map that the players are playing
on. Movements, starting point, tactics, and general strategy depend on how much
data there is about the map. For example the resources you need for building
and expanding through the game are normally distributed equally between the
players, and the players are normally placed at opposite ends of the maps. Using
the general map information and the information obtained in the moment the game
starts (map, size, exact location, opposite race), a player will decide on his build
order and starting actions.

2.2 Important Techniques 5

Scouting

Reasons for exploring the map are not just to find out about the geographical
structure but to obtain information on the actions of the opposing player. The
player’s actions will depend on the enemy’s position, buildings, units, tactics, and
strategy. The processing of information obtained from scouting is important and
delicate since it is obtaining small pieces of information that structure a larger
network of unknown information. Also, this other source of information is more
volatile and temporal than the previous considerations because it is only obtained
for the limited amount of time the unit stays in a certain place and to the areas
the buildings limit the fog of war (the area on the map that the players is unable
to see).

2.2.3 Macromanagement

Macromanagement often just called Macro is a key concept in Starcraft Broodwar.
Macro is the ability to use all ones resources and the ability to expand at the right
times to keep a healthy economy. The most difficult part of macro is to keep up
production of units and to keep down resources while attacking. If players focus on
economy and do not attack each other, the game is considered a macro game. This
defensive tactic where a player stays in his base and builds up a big army is called
turtling. Macro heavy games where players are turtling, lead to long games with
massive battles.

Queuing

Queuing is a part of macromanagent where a player is queuing units in the same
production facility. If a player has good macro he should not queue up units. Every
time you queue a unit the resources are withdrawn instantly before the unit begins
its production time. This means that optimally you only want to have one unit
queued up at any given time for each production facility. This is also the case with
workers. Normally the player wants to keep building workers throughout the entire
match in order the have the best economy. In some cases it can be an advantage
to stop building workers and focus on spending resources on something else like a
building.

2.2.4 Micromanagement

Micromanagement also known as micro requires a player to control their units, so
that you can get the most out of them.

For a human player this can be very difficult as it requires a lot of concentra-
tion and can hurt an inexperienced players macro. An advantage for a computer
player since it does not have to balance its attention between micromanagement
and macromanagement.

One way to do micro is to keep your units alive as long as possible. If your
units stay alive after a battle then you do not have to replace as many units as
your opponent. Players can move injured units out of battle and then back in. The
reason for this is that the enemy will then start attacking another one of your units,
so your injured unit can enter back in the battle and continue doing damage. A
unit will do the same amount of damage no matter how much health it has but will
do no damage if it is dead.

Another form of micro is making several of your units attack one unit at a time.
This action is called focus firing. A computer can do this very well. Computers
can perform calculations to find how many units it takes to kill another unit in one
shot. This is useful so that too many units do not waste their shots trying to kill

6 Analysis 2

one unit when they can be damaging other units.

In order to micro units effectively you must be able to do a lot of different actions
at one time. This is generally measured by a unit called APM. A computer can
have an extremely high APM making it easy for it to micro its units effectively.

2.2.5 Meta-Game

Being unpredictable can win you the game when playing in tournaments and nor-
mal matches. If your opponent is adapting to your play style you can throw him
off by doing something different or playing strange. In tournaments psychology is
a big factor. Professional players can make their opponent do a certain strategy
because they know how their opponent will react to certain actions. This feature
will be hard or nearly impossible for a bot to learn because the bot won’t be able
to identify the opponent’s play style in depth because the human can do a creative
new build that the bot won’t know and can’t react to. If it can not identify the
play style it will not be able to put the opponent off.

Before we can narrow down how our bot will work we will have to determine
which race the bot will play. It could be able to play all three races, but this will
be time consuming and not interesting in relation to Machine Intelligence. We have
therefore settled on one race, which is Terran.

2.3 Terran Tactics

This section will feature some concrete techniques a Terran player can use to win
a game. These tactics are important to analyze because a bot will need to utilize
these tactics in order to win.

2.3.1 Timing Attack

A timing attack is an attack which either hits when a specific upgrade is done
and/or when the opponent is vulnerable in his specific build order. When a bot
does a timing attack it can be deadly because a bot can be very precise. Making
the bot attack when a specific upgrade is completed is trivial, but for it to analyze
when the opponent is weak may be a more difficult task. This would require the
bot to research which build order the opponent is using and change its build order
or strategy to fit a timing attack. If the bot could succeed in doing this, it could
take opponents off guard.

2.3.2 Pushing

The term pushing refers to an attack that occurs when the Terran player has gained
a large army after being defensive for a long period of time. It is called pushing
because the idea is to push the opponent all the way back to their base where you
can deal the finishing blow. This Terran tactic is relatively easy to execute because
it is generally easy to defend your base as Terran. When you are ready to do the
push your army will be difficult to beat.

2.3.3 Harassment

Harassing is a tactic that every race can use, but here we will give some ways for
the Terran race to do it. Doing drops is one way to harass. Dropping refers to
transporting units into the opponents base. The most common type of drops for
Terran are done with vultures and marines. Vultures are fast and can take out
the workers in the base. They can also place mines so enemy units can not easily
come to defend the workers. When dropping with marines the purpose is generally
just to destroy important enemy buildings rather than kill workers (note this is not
always the case). Vultures can also be used without dropping them. Because of

2.4 Bot Analysis 7

their superior speed vultures can easily slip past enemy units and into the enemy’s
main base. Doing drop harassment requires good multitasking ability. If you keep
your units out of sight for one second they might be destroyed, and if you forget to
macro you can get far behind economically. This is a field that the bot can really
prove its abilities because multitasking is something that is hard for a human to do
but easy for a computer.

2.3.4 Mining the Map

This tactic is used to gain map control by placing mines all over the map. A mine
is set by a vulture if an enemy unit is near it. The mine will unburrow and run
after the enemy unit dealing massive damage if hit. To see a burrowed mine you
will need detection. By mining the map you can slow the opponent down because
he needs to kill the mines before he can attack. This can give the Terran player
security and a way to establish a superior army and economy. Mining the map is
also a tactic that requires a lot of multitasking and is quite closely related to the
harassment tactic because they both act in a aggressive way.

2.4 Bot Analysis

This section will discuss the way we will apply Machine Intelligence to control our
bot. It is interesting to look at how a bot compares to a human both physically
and mentally.

Outplaying a human player

A bot can easily physically outplay a human player in Starcraft Broodwar. Do-
ing micromanagement is really demanding for a human because it requires a lot of
actions and fast reaction. A bot may be able to control each attacking unit individ-
ually and make intelligent decisions on attacking according to health, cooldown and
other factors. This is nearly impossible for a human to do in a large scale. This is
why a bot that is focusing on micromanagement could be interesting to make. An-
other point is that while a player is doing micromanagement a lot of other actions
are needed elsewhere. If these tasks are not handled this could lose one the game.

Outsmarting a Bot

Outsmarting refers to either bluffing, tricking or just making good decisions. This
will be hard for a bot to do, because there are so many different strategies. Being
able to reacting to everything and be able to counter these strategies will be difficult.
Something unexpected can break the bot down completely.

2.4.1 Choice of Main Focus

The area we think the bot will really be able to out play a human is in micro. It
can do this by controlling a lot of units very precisely. This is interesting since it
will be able to do something that is impossible for a human player, i.e. the bot will
be able to control one unit at a time. It will also be easier to spot the learning part
of the bot because the performance can be measured, e.g. units killed.

2.5 Unit Analysis

We will now take a look at three Terran units which could be interesting to micro.
In the analysis of the units we will focus on the range, movement speed, damage,
armor, availability, micro benefits, and fire cooldown.

8 Analysis 2

2.5.1 Marines

Hit points 40
Range 4
Weapon Cooldown 7.5/15
Price 50m
Building needed Barracks

Marines are interesting because they can shoot air and ground units. The upgrade
stimpacks increases the marines movement speed and doubles the fire rate. This
makes the unit very dynamic and gives it high micro benefits. Marines are easy to
get and are normally the first unit a Terran uses in their army. Marines only have
a range of 4 and are the slowest unit that we are going to take a look at. Their hit
points are only 40. Since marines can be gotten so early, they are a good candidate
for the project. On the other hand, to get the full benefit from the marines they
need upgrades and support from medics to heal them.

2.5.2 Vultures

Hit points 80
Range 5
Weapon Cooldown 30
Price 75m
Building needed Factory

Vultures are a little car with a high speed. Because of a longer range the vulture can
out range the marine. Like the marines, the vultures also have upgrades. The most
interesting upgrade is the spider mines that allows the vultures to place three mines.
When another unit goes near the mine it will detonate dealing a large amount of
splash damage. The vultures are made from the Factory which means you will be
able to get marines before you get vultures. The good thing about vultures is the
price is only 75 minerals. Having all this in mind, it is clear that vultures have
much to offer in terms of micro. That being said the vultures fire cooldown is 30
which is twice the marine’s cooldown (see reference [2]).

2.5.3 Wraiths

Hit points 120
Range 5
Weapon Cooldown 22/30
Price 150m 100g
Building needed Starport

Wraiths are air units that can attack ground and other air units. This means that
they can move over edges and cliffs which allows it to move over large distances
within a short time period. They are interesting because they have an upgrade that
allows them to turn invisible while they have energy. It has the same fire cooldown
as a vulture when attacking ground units and 22 fps when attacking air units. The
down side of the wraiths is the price (150 minerals and 100 gas) and we need a
Starport to built it. This means there is a long time before you can get actually
buy wraith. It is clear there is a lot of micro benefits from choosing this unit.

Chapter 3

Design

In this chapter we will distinguish between the word agent and bot, where an agent
is a program thats able to learn and chance itself, and the bot it the more static.

In this chapter we are going to look at the design of the bot. First we will take
a look at the different managers we use for controlling units, producing buildings,
scouting bases and choosing strategies. Then we explain Potential fields, and how
we use them to micro the bot. In order to correct the bot and make sure that it
will be able to learn, we will explain reinforcement learning. For the macro part
we are going to use Bayesian networks to detect the opponent’s build order, predict
the opponent’s start location, and find the threat level of the opponent.

The purpose of the design is to make an agent that is able to out micro its
opponent in combat. To limit the scope we will only look at vultures. This implies
the following:

• Construct the necessary buildings to produce vultures.

• Construct a squad of vultures.

• Scout and find the enemy’s base.

• Move the squad to the enemy’s base and attack.

3.1 Bot Managers

The managers for the bot are used to control different parts of the bot. The part
which is connected to the micromanaging of units will use reinforcement learning
and Potential fields. The part which manages scouting information will use Bayesian
networks. The purpose for these managers are to separate parts of the game as
much as possible. They should only use the other managers when a task needs to
be handled by another manager. The following subsections will explain the different
managers.

Tactics Manager

This manager is responsible for managing our offensive units in and out of small
scale combat. It manages the units by controlling squads of different units.

Production Manager

This manager is responsible for producing units, constructing buildings, upgrading
technology and researching technology. The manager will be able to know what to
build by following build orders.

10 Design 3

Scouting Manager

The Scouting Manager keeps track of the opponent. It saves every enemy it has
seen and is responsible for scouting the enemy’s spawn position. It also keeps track
of which buildings the enemy has produced.

Strategy Manager

The Strategy Manager is responsible for making high-level decisions based on the
information we have. These decisions include setting the Tactics Manager to attack
the enemy or setting the Production Manager to change build order.

Worker Manager

The Worker Manager sets the workers to mine minerals, mine gas, scout, construct
buildings and perform other tasks.

3.1.1 Managers in Game Scenario

The game starts and the Production Manager begins following the build order
which produces SCVs. Every time an SCV is created the Worker Manager sets
the worker to a free mineral patch. The Scouting Manager sends out an SCV
to the opponent’s base. The scout finds the base and the Strategy Manager still
predicts that the threat level is low. The Production Manager keeps following the
build order, and now we have marines assigned to a Tactics Manager. The Scout
Manager sends out another SCV, but this one is killed before reaching the base of
the opponent. The Strategy Manager sets the threat level to high and makes the
Production Manager stop producing workers. The production manager will then
start producing only offensive units. The opponent does the attack, and the Tactics
Manager micromanages the units which defeats the enemies.

3.2 Potential Fields

Potential fields can be used to move a computer AI through a dynamically updated
environment. If one would program an AI which should move from one point to
another, one would most likely use a normal shortest path algorithm. The problem
is that if there are a lot of dynamic influences that effects the route, this calcula-
tion becomes very complex. It could be enemies that should be avoided or other
dynamic influences.

This is why Potential fields are good for such a problem. They work by gen-
erating either attractive or repulsive fields of vectors v = (m × d). Where m is
the magnitude and d is the direction. If we create an attractive Potential field the
point will be surrounded by vectors pointing toward this point, as seen in figure
F3-1. The bot will be attracted towards this point. The magnitude determines how
attractive the field will be. The direction shows in which way the bot will move.
This is called an Attractive behaviour

3.2 Potential Fields 11

Figure F3-1: Attractive behavior[3]

Likewise if we assume there is only a single obstacle in the area (a unit we do
not want to attack) it would generate a repulsive field around it, see figure F3-2.
This is called a repulsive behaviour because it causes our own units to try and avoid
it.

Figure F3-2: Repulsive behavior (see reference [3])

12 Design 3

These two kinds of behaviours can be combined to make a map that can tell our
unit how to move around enemy units and reach a specific target as seen in figure
F3-3.

Figure F3-3: Combined behavior (see reference [3])

3.2.1 Designing our Potential Field Functions

The Potential fields in our bot will reduce the vectors into constant values that
represent their importance or magnitude. We arrange the vector to fit linear values
that indicate how attractive or repulsive a field is. This number is calculated by
functions, which is either attractive or repulsive and are related to the obstacles in
the game world.

The reason we can use numbers instead of vectors is because we only care about
the Potential on the tiles 1 immediately surrounding a unit, so the direction is given
by just taking the highest number. As seen in figure F3-4.

Figure F3-4: Vector direction given by numbers

1A tile represents an 8px× 8px square. This is the smallest area units can stand on or move
to.

3.3 Functions for the Potential Fields 13

Potential Field Basic Structure

Our functions will be described with the following math (see reference [4]:)

Variables:
f = force
s = size of the Potential field
c = constant
d = distance

Attractive =

{
f ∗ c if d > s

0 else

Repulsive =

{
−f ∗ c if d > s

0 else

3.3 Functions for the Potential Fields

This section contains the functions which will be used to calculate the potential of
a field. Here is introduced some variables that are going to be used in the functions.

Variables:
c = A constant used to adjust the size of the different potential fields.
fc = A force used to adjust the potential field.
wr = Boolean denoting whether or not the weapons are ready to fire.
sr = Units maximum shooting range.
da = Distance from unit tile to nearest ally unit.
dua = Distance from current tile2 to nearest ally unit.
ds = Distance from center of army to unit tile.
dsv = Distance from center of army to current tile.
de = Distance from unit tile to enemy.
due = Distance from current tile to enemy.
dc = Distance from unit tile to nearest cliff or edge.
duc = Distance from current tile to nearest cliff or edge.

Where fc and c are specific to each part of potential field and named after each
e.g. fS for force for the squad and csquadSize for the size of the squad. A negative
force will result in a repulsive potential field, and a positive force will yield an at-
tractive potential field.

The calculation (2ds−dsv), found in section 3.3.1 and other calculations with the
same structure, are used to invert the distances. This calculation is needed because
a lot of the potential fields depend on distance. But normally when calculating
the distance from one unit to another, the distance closer to the other unit would
be smaller, and the distance further away would be larger. Because the highest
number in a potential field is the most attractive one, we sometimes need to make
the closest distance the most attractive one which is what (2ds − dsv) does. An
example can be seen in figure F3-5.

2Current tile is the tile we are currently calculating the potential field for.

14 Design 3

Squad
center

5

10

15

Squad
center

(2*de-due) =
(2*10)-5 = 15

(2*de-due) =
(2*10)-10 = 10

(2*de-due) =
(2*10)-15 = 5

Unit position

With (2*de-due)Without (2*de-due)

Figure F3-5: Correcting the distance

3.3.1 Squad Center (Attractive)

A vulture is more likely to survive if it sticks together with its squad. It will both
give a better damage output and also spread out damage taken.

SquadCenter =

{
0 if ds < csquadSize

fS × (2ds− dsv) if ds >= csquadSize

First case The units are within the desired squad size. In that case we do not
need to attract the units more towards the squad center.

Second case The unit is outside the desired squad size. In that case we need to
attract it towards the squad center.

3.3.2 Maximum Distance Positioning (Attractive)

The vultures have to utilize their range, so they will be attracted to the position
which gives them the maximum distance to the enemies.

MaximumDistancePositioning =

{
fMDP × (2de− due) if de < sr

0 if de > sr

First case We want to get closer to the enemies because we are not within shooting
range.

Second case The unit is within range and doesn’t need to get closer. One could
argue that we need a third case to handle if we are getting to close, but this
is handled by Weapon cooldown.

3.4 Agent Learning 15

3.3.3 Ally Units (Repulsive)

We do not want all of the vultures to clump completely together during a match.
This can lead them vulnerable to splash damage attacks. If we keep the vulture
spread out a reasonable distance the splash damage will not have any effect.

AllyUnits =

{
0 if da > callyDistance

−fAU ∗ (2da− dua) if da < callyDistance

First case The unit is sufficiently far away from the enemies to not sustain splash
damage, so we do not need to get any further away.

Secound case Active when the units are too close, and we need them to move
away from each other.

3.3.4 Weapon Cooldown (Repulsive)

A vulture cannot do any damage right after it shoots. This is because there is a
certain amount of time in between each shot. Right after a vulture shoots we want
to move it out of the battle until it can fire again. This way each vulture will be
less vulnerable to taking damage when it cannot give any damage.

WeaponCoolDown =

{
0 if wr

−fWCD ∗ (2de− due) else

First case The weapons are not on cooldown, so nothing happens.

Second case The weapons are on cooldown, and we need to flee.

3.3.5 Edges and Cliffs (Repulsive)

We do not want our vultures to get stuck against any walls so we will add a potential
field for any edge where a unit can get stuck.

EdgesAndCliffs =

{
−fEAC × (2 ∗ dc− due) if dc < cedgeDistance

0 if dc > cedgeDistance

First case We are too close to the edges and need to move away.

Second case Nothing happens.

3.4 Agent Learning

The purpose of agent learning is to be able to adjust each force from the potential
field, to help improve its performance, and to learn how to fight efficiently.

This section addresses various learning techniques and methods that could be
used in the AI agent. There will be a brief explanation of the the two options we
considered. First, we give a brief overview of neural network. This is followed by
the examination of its usability in our project. Then the we talk about different
reinforcement learning techniques.

Neural Networks

Neural networks cover different learning methods that an agent can execute to ap-
proximate values or target functions. They are ideal for interpreting complex real
world data and are widely known for being one of the most effective learning meth-
ods. These methods can be used to teach behaviour patterns in a human-like way.
This is because neural networks are biologically based in how the brain obtains,

16 Design 3

stores, and uses new information.

Neural Networks model a very complex web of interconnected nodes that take
large sets of numbers and reduces all the input into one single number for output.
This network is constructed of several individual neurons. Each neuron takes 3
numbers as input and delivers one as an output. Using this principle, several input
numbers are forwarded through all the connections (both expansions and simplifi-
cations) until one final choice or signal is produced.

We have chosen not to use a neural networks. The main reason is that neural
networks are very slow. The complication with neural networks is the number of
calculations that are made for making every decision grows exponentially in time
complexity. In a real-time-strategy game where we can have around 50.000 states,
the computation time will take too long and the input will be way to high since
every minute 50.000 states have to be computed. A less analytic generalization
method would be a better approach because it approximates the correct decision
and does not have to compute the entire state-space in a game.

Reinforcement Learning

Reinforcement learning (RL) is a method used to build models or functions that
learn from experiences and examples. The basic idea is that for every action in an
environment, there is a reward or some feedback that reinforces all actions that have
a bigger reward. We consider a reward a numerical value that grades the result of
any action. On a larger scale, the task of reinforcement learning in this report is the
process to discover the optimal path; the series of actions that accomplish the best
possible total reward at the end of the process. This reward depends entirely on the
agent’s policy, better defined as the strategy it follows for accomplishing something.

There are different RL techniques that depend on the amount of information
we have available for learning. They can be classified into passive and active RL
methods. In passive RL the agents policy is fixed and the task is to learn the utilities
of each state. (see reference [5, p764]) This implies that the environment is fully
observable and the agent knows the future impact of its actions. The learning part
of the algorithm is only in charge of finding the best strategy for the already defined
probabilities. The active reinforcement learning does not have a fixed policy to begin
with, and the agent must decide what actions to take (see reference [5, p771]). So
the agent basically explores considering that it can’t look ahead for more than a
move or predict the effects of its actions in the future.

Markov Decision Process

With the intent of further expanding on the RL capabilities, we need a way to define
the task of the agent. A general formulation of the problem starts based on Markov
Decision Processes: In a Markov Decision Process (MDP) the agent can perceive
a set S of distinct states of its environment and has a set A of actions that it can
perform. At each discrete time step t, the agent senses the current state st, chooses
a current action at, and performs it. The environment responds by giving the agent
a reward rt = r(st, at) and by producing the succeeding state st+1 = δ(st, at). Here
the functions δ and r are part of the environment and are not necessarily known
to the agent. In an MDP, the functions δ(st, at) and r(st, at) depend only on the
current state and action, and not on earlier states or actions. (see reference [6,
p370])

With this we almost have enough information to build the problem structure
of the agent. We need to consider a function that describes the total cumula-
tive reward of a set of actions. It could be any function: discounted cumulative

3.4 Agent Learning 17

reward (
∑∞
i=0 γ

irt+i), average reward(limh→∞
1
h

∑h
i=0 rt+i), finite horizon reward

(
∑h
i=0 rt+i). This reward function varies depending on what the agent needs to

learn. The most common example is the discounted cumulative reward which is
just the sum of all the rewards with a discount factor (γ) that progressively reduces
the importance of past experiences.

Once we have the reward function, we can define the learning task of the agent.
In passive RL it is to find a utility function or how good a certain policy is. In
active RL is to find a policy that maximizes the value of the reward function, in
other words, finding the optimal policy.(see reference [6])

Direct Utility Estimation & Bellman Rules

In passive RL, the method of Direct Utility Estimation (DUE) follows the idea that
the utility of a state is the expected total reward from that state into the future.
At the end of a trial, the RL algorithm for DUE will trace back through all the
observed rewards and calculate the estimated utility for every state. It is basically
a process of inductive learning that observes a set of data that is completely known.
The formula for calculating the utility values follows the Bellman equations for a
fixed policy (see reference [5]) The problem with this technique is that it ignores the
relationship between the states (they are not independent from each other), and it
only learns at the end of a trial, therefore missing several opportunities for learning
and converging very slowly (see reference [5]).

Adaptive Dynamic Programming

Searching for a way of considering the constraints between states, we come across
Adaptive Dynamic Programming (ADP). This is an agent that learns the transi-
tion model for an environment while solving the MDP. We call transition model the
function that evaluates form the current state and action to the new state. In a
fully observable environment, this means that you use a transition model and the
observed rewards into the Bellman equations to calculate the utilities of a state. In
simpler terms, it means that while learning each step (state-action pair) you keep
track of the outcome and then save it into a table of probabilities. At the end you
have a comprehensive probability table for all the transitions, in this way you know
a reliable model for knowing what is going to happen with every state-action pair
(see reference [5]).

But we have to take into consideration all the possible states in a game. We
call all the possible states that can be achieved by any action throughout the entire
game the state space. The problem is it is impossible to calculate ADP tables for
large state spaces, specially if you have to run several trials to exhaust every rea-
sonable possibility for every transition. Therefore not usable for our agent.

Temporal Difference Learning

The combination of the previous two methods, using the observed transitions to
adjust the values of the observed states so that they agree with the constraint equa-
tions(see reference [5, p767]), produces the following rule (to be applied every time
a transition occurs form state s to s′):

Uπ(s) = Uπ(s) + α(R(s) + γUπ(s′)− Uπ(s)) (3.1)

This update rule (temporal difference equation) uses the difference in utilities
between succesive states. It shifts or updates the estimates towards the ideal equa-
tion. There are several things to notice here. The first is that since it updates

18 Design 3

with the next state (s′), it might seem like it adapts too much to every trial, but
in reality this update rule is applied several times, therefore producing an average
and isolating rare cases. (see reference [5])

The second is the appearance of α, also known as the learning rate parameter;
how much it learns from an specific trial. Normally the value of α would be some-
thing like: 1

1+numberOfV isits(s,a) (see reference [6, p382]). Which then decreases

the magnitude of the update proportionally to how many times you visited a state-
action pair.

Q-learning

All the previous methods have been explained considering there is a fixed policy that
determines the behaviour of the agent. Now the task shifts to active reinforcement
learning because we need our agent to decide which action to take in each state-
action pair. We need an active temporal difference learner (that learns the utility
function U). In Q-learning this utility function is:s (see reference [5])

U(s) = maxa(Q(s, a)) (3.2)

Where Q(s, a) represents the value of making and action a in a state s. And
if we use the temporal difference approach for Q-learning we have the following
updating rule: (see reference [5])

Q(a, s)← Q(a, s) + α[R(s) + γmaxa′(Q(s′, a′))−Q(a, s)] (3.3)

Q-learning is a temporal difference learner that does not need a model for either
learning or action selection (see reference [5, p775]). It simply executes the updating
rule every time and action a is executed in a state s that leads to an state s′. The
only restriction we have left is that the algorithm for exploration for this Q-learning
temporal difference agent is the same as in the ADP agent (see reference [5, p776])
. That means that it keeps track of every movement and saves the statistics in a
table. It easily learns and saves the optimal policy for small state spaces, but it is
impossible to keep track for larger ones.

Generalization of Q-Learning

The choice of using reinforcement learning was based on the necessity to train our
AI to improve while it plays. Since our environment covers a lot of different factors
and variables, we decided to use a form of active reinforcement learning that sim-
plifies the complexity and size of all the different states.

Generalization in reinforcement learning takes into consideration huge state
spaces by representing them as function approximations. This function reduces
the complexity of mapping all the states considerably and allows the learning agent
to generalize from the visited states to the non-visited ones.

There is the problem that there could fail to be any function in the chosen hy-
pothesis space that approximates the true utility function sufficiently well. As in
all inductive learning there is a trade-off between the size of the hypothesis space
and the time it takes to learn the function. A larger hypothesis space increases the
likelihood that a good approximation can be found, but also means the convergence
is likely to be delayed. (see reference [5, p778])

When a function approximation reaches the optimal values or closes around
them can say it converged. The option of choosing linear function would ensure
that the convergence is not excessively delayed. For example, if there is a function
approximation in the following form:

3.4 Agent Learning 19

Q̂(x, y) = f0 + f2x+ f3y (3.4)

We can use the updating rule or Q̂-learning equation that evolves from the Q-
learning temporal difference formula, now taking into consideration the values of
the function approximation: (see reference [5])

fi ← fi + α[R(s) + γ(maxQ̂f (a′, s′))− Q̂f (a, s)]
∂Q̂f (a, s)

∂fi
(3.5)

Where fi is each one of the coefficients in the Q-approximation.

α - Is the learning rate. As mentioned before it means how much you modify the
value of the coefficient fi to fit the current example or situation, it learns from
each visit to every state. Its a number, 0 < α < 1, that in a normal temporal
difference equation (see reference 3.4) would (optimally) decrease according to
how many times a state is visited (see reference [5]). Since every one of our states
is visited infinitely many times, the value α can be a fixed number that we modify
manually. The higher the value, the more you learn from every specific case.

γ - Is the discount factor, this determines the importance of the future rewards.
Its a number, 0 < γ < 1, the closest γ gets to 1 the more it takes into account
future rewards. A γ value close to zero would maximize the immediate rewards.

R(S) - represents the reward function for the current state.

Q̂f (a, s) - Is the value of the Q̂f function for the next position (one step ahead).
The next position depends on the current state s and the action a performed by
the agent from that state.

max(Q̂f (a′, s′)) - Is the highest possible Q̂f value calculated from the next
position (two steps ahead). The highest possible option (for every a′) once the
current state s has performed an action a and is in a new state s′ = δ(a, s).

∂Q̂f (a,s)
∂fi

- Is the partial derivative of the Q̂f function with respect to the current
fi, in other words the variables or factors that afect only that coefficient fi. And
in the case of our linear Q̂f function, always a constant representing some
distances in a certain state.

Convergence in Aproximation of Q-Learning

In a normal Q-learning process the rules are the following: First, we must assume
the system is a deterministic markov decision process. Second, we must assume the
immediate reward values are bounded; that is, there exists some positive constant c
such that for all states s and actions a, r(s, a) < c. Third, we assume the agent se-
lects actions in such a fashion that it visits every possible state-action pair infinitely
often. (see reference [6, p377])

The only difference between this process and the approximation to Q-learning
is the generalization of unvisited states. But this generalization is also guaranteed:
These update rules can be shown to converge to the closest possible approximation
to the true function when the function approximator is linear in the parameters.
(see reference [5, p779])

20 Design 3

3.5 Application of Generalization of Q-Learning

The Starcraft Broodwar environment has several factors that could be considered
important for defining a moment in time; units, frames, enemies, distances, map el-
ements etc. Since formulating a model considering all the factors made the function
too complex, we focused on the factors that could model the environment as closely
as possible without increasing the size and computability time of each calculation.
We have to also consider how long is the learning time.

3.5.1 Q-Learning Functions

We combine the generalization of Q-learning with the potential fields to obtain a
reasonable model of the Starcraft Broodwar environment. We do this by transform-
ing all the potential fields (per unit) into a simplified version of the Q function used
by the agent. The first thing we needed to specify was a representation of all the
data relevant for a specific time or frame, our hypothesis space.

State - Hypothesis Space

We define a state in our environment as a combination of the most important factors
that interact with the agent and the game. It consists of all the distances used in
the potential fields plus the numbers required to calculate a comprehensive reward
function.

State =

da

dua

ds

dsv

de

due

dc

duc

wr

sr

numberOfUnits

healthLost

damageDealt

numberOfKills

time

The variables numberOfUnits, healthLost, damageDealt, numberOfKills and
time are variables accessible through the entire game, therefore used as part of
our reward function. The description the rest of the factors or distances is the same
as mentioned before in the potential field’s documentation (see reference 3.3).

Function Approximation

After defining a state in the game we created a linear function approximation to
ensure convergence of each value. The function takes all the forces that determine
the magnitude of the potential field vectors as coefficients or weights in the Q̂ func-
tion.

Q̂f = fMDP (2de−due)+fAU (2da−dua)+fEAC(2dc−duc)+fS(2ds−dsv)+fCD(2de−due)
(3.6)

3.5 Application of Generalization of Q-Learning 21

This function is not a thorough model of the true utility function, but it covers
all the factors that affect the movement of a unit. Since every unit is controlled
independently with this movement model/function, it covers the purpose of using
the computer’s capabilities of controlling each unit’s movement separately and op-
timally (micro).

Notice that there are forces that are dependant on the exact same variables,
like Cooldown and Maximum Distance Positioning. This coefficients vary in mag-
nitude because they are updated and calculated under different circumstances and
throughout different moments in the game. This is furthered explained in the im-
plementation documentation (see section 4.4.1).

Updating Rules

Then we apply the updating rules (equation 3.6) mentioned for the Q̂ learning. In
the context of our Q̂f function, it would represent the forces: fMDP , fAU , fEAC ,
fS , fCD. The exact same forces that represent each one of the potential fields. So
we are left with the following updating rules for each of the coefficients/forces:

Maximum Distance Positioning

fMDP ← fMDP + α[R(s) + γ(max(Q̂f (a′, s′)))− Q̂f (a, s)](2de− due) (3.7)

Ally Units

fAU ← fAU + α[R(s) + γ(max(Q̂f (a′, s′)))− Q̂f (a, s)](2da− dua) (3.8)

Edges and Cliffs

fEAC ← fEAC + α[R(s) + γ(max(Q̂f (a′, s′)))− Q̂f (a, s)](2dc− duc) (3.9)

Squad

fS ← fS + α[R(s) + γ(max(Q̂f (a′, s′)))− Q̂f (a, s)](2ds− dsv) (3.10)

Cooldown

fCD ← fCD + α[R(s) + γ(max(Q̂f (a′, s′)))− Q̂f (a, s)](2de− due) (3.11)

These updating rules should eventually converge to values that are very close
to the optimal Q function, since we considered all the restrictions for convergence.
The final result (after converging) should be the perfect magnitude for the potential
fields to guide every unit’s movement.

Reward Function

We created a reward function that takes into consideration all the factors to grade
the performance of the agent. The reward function gives positive points for keeping
the highest number of units alive, negative points for loosing health, positive points
for both killing or damaging the enemies, and a negative reward for every time
frame in the game that goes by. This way we ensure that the agent wants to attack
the enemy while protecting its units; but not prioritizing protecting the units. We
control that the agent chooses attacking over hiding or running away by making the
reward proportional to how short the match is.

R(s) = C1numberOfUnits−C2healthLost+C3damageDealt+C4numberOfKills−C5time
(3.12)

We ensure that the reward complies with the convergence restrictions for Q-
learning (see reference 3.4). The reward function is bound, R(s) <= C. The
upper bound of the constant C defined by C = C1startingNumberOfUnits +
C3maximumDamageDealt+C4maximumNumberOfKills. The lower bound de-
fined by C = −C2maximumHealthLost− C5frameCount.

22 Design 3

3.6 Bayesian Networks and Decision Trees

In this section we are going to define Bayesian networks and decision trees. Then
we are going to compare the two decision models and choose the best model that
our bot can use for analysing information.

3.6.1 Bayesian Networks

Bayesian networks are simple graphical models where each probability for the node
is calculated. Therefore the Bayesian networks are used for calculating new prob-
abilities whenever new information is gathered. Bayesian networks have a set of
nodes (F3-6- C1,C2,C3) that are connected with directed edges. Each node in the
Bayesian network must have a finite set of mutually exclusive states. By this we
mean that we can only be in one state in each node. To make sure that we can
calculate a result, the Bayesian network needs to be an acyclic directed graph. A
node needs a conditional probability table for each of its parents. This means that
the amount of calculations in a Bayesian networks depends on the number of nodes
and the edges that connect them (see reference [7, p. 33]).

Figure F3-6: A simple Bayesian network

3.6.2 Decision Trees

Decision trees are used to represent decision problems. The figure F3-7 gives an
example of a decision tree that helps investment decisions. A decision tree consists
of three types of nodes: decision nodes (F3-7 square boxes), chance nodes (F3-7
circles), and utility nodes (F3-7 triangles). The link from a decision node to a
chance node is called an action, and a link from a chance node to a decision node
is called a state. The idea of the decision tree is to find the path that will give us
the highest utility (reward). To make a decision tree over a decision problem, every
possible path of decisions have to be shown in the tree. This will create a tree that
grows exponentially with the number of decision and chance nodes. Small decision
problems will require big trees if not reduced.

3.7 Designing Bayesian Networks for Prediction 23

Figure F3-7: A simple decision tree (see reference [8])

3.6.3 Choice of Model

We choose to use a Bayesian network solution for our problems because decision
trees grow exponentially with the number of nodes, and Bayesian networks are
easier to handle and manipulate.

3.7 Designing Bayesian Networks for Prediction

This section will describe the Bayesian networks we made to predict the enemy’s
spawning position, what build order they are doing and what the current threatlevel
is. The next subsection describes the network created for predicting the enemy
spawn position.

3.7.1 Prediction of Enemy Spawn Position

The purpose of this Bayesian network is to find our opponent’s spawning position.
Some factors taken into account are our spawn position, enemy scouts, and time
into account to help us predict this. We wanted to make this network usable on a
variety of maps. Below is a visual representation of how each node is connected in
the network.

Figure F3-8: A graph of the nodes in the Spawn Prediction Bayesian network

24 Design 3

EnemySpawn

The correct state in this node is the value we are trying to discover. Ultimately, all
of the evidence we collect, will be used to find this state. Most of the other nodes
have direct links from this node. Once we know the state of this, we are satisfied
and do not need to use the network to infer more information because we do not
care about predicting any of the other states.

OurSpawn

This node is a child of EnemySpawn. We can use the values in this node to determine
where the enemy does not spawn. We simply say that the enemy cannot spawn
where we spawn at. At the beginning of a match we know where we spawn and can
instantly put evidence on the OurSpawn node. This instantly reduces the change
for our opponent to be at any other spawning location to 33%.

EnemyNotAt(NE,SE,SW,NW)

These nodes are used to keep track of positions we know our opponent did not
spawn. Since a node can only be in one state at a time, we made four nodes that
can influence the probabilities in enemy spawn. Ways we would generally get these
values could be our own scouts arriving at a position and not finding our opponent.

WorkerScoutPosition

When we observe an enemy worker at a certain position on the map, we can influ-
ence our belief on our opponents spawn position. This is because the opponent’s
scout will take a certain amount of time to get to a certain position on the map.
TimingSeen is a parent of this node. We use the information from this node to
help our prediction. Just seeing an enemy at a certain position is not enough. We
need the time we see the enemy scout to help us form our beliefs. Whenever we
obtain evidence on WorkerScoutPosition we will also always gather information on
TimingSeen.

TimingSeen

This node is used to help us use the information from WorkerScoutPosition. It has
the values: Almost None, Early, Middle, and Late. These values are the times we
may see the opponent’s scout. Since the values for timing depends on both map
size and map layout, we purposely made the values broad.

OverlordDirection

Since overlords are so slow, a player will be able to use the direction the overlord
is coming from to predict the spawn location. By the time an overlord would have
visited two bases we probably would have already known where the enemy’s base is.
This node only helps when fighting against Zerg players. EnemySpawn is a parent
of OverlordDirection. Once we know the direction the overlord is coming from we
gain a lot of information on the enemy’s spawn position.

3.7.2 Build Order Prediction

This subsection describes the Bayesian networks that was created for predicting
that build order the enemy is doing. The networks have some similarities between
them. There are three different networks, one each for every race that the bot can
encounter: Terran versus Terran, Terran versus Protoss and Terran versus Zerg.

They all have a node called BuildChosen, which is the node containing the
beliefs for what the enemy’s build order is. The other nodes are buildings (Except
an upgrade node in the Terran versus Protoss network) all with the states Seen

3.7 Designing Bayesian Networks for Prediction 25

and NotSeen, though Seen is only used when presenting evidence, because the bot
will never be able to prove that the enemy building does not exist. These states
determines if we have scouted the building. The order in which the buildings come
in is modelled with arrows going from the nodes representing the buildings needed
to the node representing the building which needs that building. As buildings are
scouted evidence are put on the state Seen on the nodes and the probabilities for
the most probable build order is increased.

Terran versus Terran

This network will try to predict the following buildorders: Proxy Rush, 2 Fac-
tory Vulture Pressure, 1 Factory Expand, 1 Starport Wraith and Stim Rush. The
numbers in the node names are how many of the given unit the enemy have, e.g.
Barracks2 means the second barracks the bot scouts.

Figure F3-9: Terran versus Terran prediction network

Terran versus Protoss

This network is bigger than the other two prediction networks. Instead of having
only having a node for BuildChosen it has a node for the opening used. The reason
for this is that Protoss is very versatile race and the different openings affect when
the build order hits and what kind of build the player is more likely to use. After
the opening is determined all the nodes affecting the openings are not updated any
more. The build orders the network can predict is : 2 Base Carrier, 2 Base Carrier
and 2 Base Arbiter. The openings the bot can predict is: One Gate Tech, Two
Gate Range, Nexus First and Two Gate Zealot Rush.

26 Design 3

Figure F3-10: Terran versus Protoss prediction network

Terran versus Zerg

This network will try to predict the following buildorders: 2 Hatch Muta, 3 Hatch
Muta, 3 Hatch Lurker and Early Pool Rush, where Early Pool Rush is a 4pool or
5pool. The nodes have names as in the Terran network, where a node name ends on
how many of that type is scouted. E.g Hatchery3 means that the bot have scouted
3 hatcheries.

Figure F3-11: Terran versus Zerg prediction network

3.7.3 ThreatLevel Prediction

This prediction is closely related to the prediction of the build order the enemy is
doing. A build order have a certain time where it is effective or where it hits. So
determine what the current threatlevel is two nodes have to be added to each of
the build order prediction networks, ThreatLevel and Time. ThreatLevel have the
states Low, Medium and High, and to make the network simple it only has three
states for time: 0-5 minutes, 6-8 minutes and 9-11 minutes. By presenting evidence
as before and on the time node the current threatlevel can be read.

3.8 Design Summary 27

Figure F3-12: ThreatLevel for the Terran versus Terran matchup

3.8 Design Summary

In this chapter we compared the different tools we use in constructing our bot.
We separate different parts of the games into different managers so we can easily
manage our bot. We then decided to use Potential fields for movement. This is
because it would be impossible to come up with a generic algorithm that takes all
of the variables in a game into account. To compute the best forces for the different
Potential fields we use a generalization of Q-learning. Generalization of Q-learning
works well in our case because of an extremely high number of states in a Starcraft
Broodwar game. For analyzing information we decided to use Bayesian networks.
We choose to come up with networks for enemy spawning positions, enemy build
orders, and enemy threat. In the next chapter we will discuss how we implement
these concepts.

Chapter 4

Implementation

This chapter will explain implementation of the parts of the bot. This is done by
showing code snippets and examples. First we will look at the core of Bayesian
Networks then we look at the overall structure of the managers. Next we look at
implementation of the different Potential fields. Finally we will look at how we
implemented Q-Learning.

To communicate with Starcraft Broodwar we use an API called BWAPI. A link
can be found in the bibliography (see reference [9]).

4.1 Class BayesianNetwork

For handling Bayesian networks we use the Hugin API (see reference [10]) which
can handle loading networks, inserting evidence, and do other manipulations of .net
files. The way to insert evidence into the nodes can be a hard task because many
steps are needed. To make it easier for classes to use the networks we wrote a class
called BayesianNetwork.

When a class needs a Bayesian network it uses this class. The constructor
takes a file name, which then loads the given Bayesian network. The class also
contains methods for printing nodes, retracting evidence, and inserting of evidence,
and getting the probability of a state. The method for inserting evidence will be
explained beneath.

Inserting evidence

1 void BayesianNetwork :: EnterEvidence(std:: string nodeName ,std::

string stateName){

2 domain ->uncompile ();
3 NodeList nodes = domain ->getNodes ();

4 for (NodeList :: const_iterator it = nodes.begin(); it != nodes.

end(); ++it)

5{
6 Node* node = *it;

7 if(nodeName == node ->getName ())

8 {

9❶ DiscreteChanceNode* evidenceNode = dynamic_cast <

DiscreteChanceNode *>(node);

10 size_t index = evidenceNode ->getStateIndex(stateName);

11❷ evidenceNode ->selectState(index);

12 break;

13 }

14}
15 domain ->compile ();
16 domain ->propagate(H_EQUILIBRIUM_SUM , H_MODE_NORMAL);

17}

30 Implementation 4

Listing 4.1: EnterEvidence method

The method starts by uncompiling which is needed to manipulate nodes. After
this it loops through all the nodes until it finds the specified node. At ❶ the node
is converted to a DiscreteChanceNode because evidence cannot be presented to a
normal node. The reason for this is that there are many types which inherit from
the Node class which does not all use evidence. The index of the wanted state is
retrieved and the state is selected at ❷ which is the same at presenting evidence
at the state. After the evidence is presented, the domain is then compiled and
propagated. The propagate function calculates the new probabilities for the states
in the network.

4.2 Managers

A manager is responsible for controlling different sections of the bot. Sometimes
they still have to pass tasks to each other. Each manager has a method called
Update which is called on each frame and is used for running their code.

4.2.1 Production Manager

The production manager is responsible for producing units, constructing buildings,
and researching technology. Every time a new production facility or research facility
is produced it will be saved here, so we are can use them later. The tasks that the
production manager is responsible for are passed from a class called BuildOrder-
Handler.

BuildOrderHandler

This class contains the build orders the bot can use and passes the items as tasks for
the production manager. A BuildOrder contains a list of BuildOrderItems which
every class that inherits from this class can use. The items the build order can store
are:

• BuildingItem - Contains a building to be constructed

• ProductionFocusItem - Contains a new Production Focus

• ResearchItem - Contains a research technology that needs to be bought

• UpgradeItem - Contains an upgrade that needs to be bought

• ScoutItem - Sends an SCV to scout

• UnitProductionItem - Contains a unit to be produced

In the constructor each these items conditions will be placed so the item first will
get carried out when the conditions are fulfilled. The conditions we have are:

• SupplyCondition - Is fulfilled when the supply is reached

• ThreatLevelCondition - Is fulfilled when the threatlevel is reached

• UnitProductionCondition - Is fulfilled when the number of units or buildings
reaches the number specified

The following code snippet shows the main loop of the BuildOrderHandler which
goes through the items in the build order and checks if the conditions are all fulfilled.

4.2 Managers 31

1 std::list <BuildOrderItem*> items = _currentBuildOrder ->

GetBuildOrderItems ();

2❶ for(std::list <BuildOrderItem *>:: iterator item = items.begin()

;item!= items.end();++ item)

3 {

4 bool allConditionsFulfilled = true;

5 std::list <Condition*> conditions = (*item)->GetConditions ();

6 for each(Condition* condition in conditions)

7 {

8 if(!condition ->IsFulfilled ())

9 {

10 allConditionsFulfilled = false;

11 break;

12 }

13 }

14 //If all the conditions of the item was fulfilled we save it

to the right list of tasks

15 if(allConditionsFulfilled == true)

16 {

17 SaveAsTask (*item);

18 _currentBuildOrder ->items.remove (*item);

19 }

20 }

Listing 4.2: BuildOrderHandler main loop

This loop grabs the BuildOrderItems in the current buildorder and in the loop at
❶ we check if all the conditions of the item were fulfilled. Each condition object
inherits from the class Condition where they inherit a method called IsFulfilled.
Each condition that overrides the method has to specify when the given condition
will be fulfilled. If all the conditions were fulfilled, we convert the item to a Task and
save it so the ProductionManager can retrieve the Task. The difference between a
BuildOrderItem and a Task is that the item is stripped of all information except
the information that is important in producing the task.

Retrieving and Executing Tasks

The ProductionManager contains methods for retrieving tasks from the BuildOrder-
Handler. There is a method for each type of task it can produce. When it has
retrieved all the tasks it tries to see if it can execute it right away. If we can afford
to do the task it will be passed on to the appropriate method for execution. These
methods are called TryProduceUnit, TryConstructBuilding, TryUpgradeTech, and
TryResearchTech. There is a method for both upgrades and researching because
the BWAPI makes a distinction between these two types. The methods all follow
the same basic pattern.

• Check if we can afford the task

• Find a building that can execute the task

• If both succeed the task will be executed

The only method that does not follow this pattern is the method TryConstruct-
Building. The reason for this is that the ProductionManager is not able to con-
struct a building without an SCV. Because of this we pass this task on to the
WorkerManager that will try to construct the building.

4.2.2 WorkerManager

This manager controls the SCVs the bot owns and is responsible for constructing
buildings. When an SCV is created it is saved to a list of SCVs and is given a state.
An SCV can be in one the following states: Constructing, BeingBuild, MiningGas,

32 Implementation 4

MiningMinerals, Defending, Evading, or Nothing. When the SCV is completed from
the Command Center it will get the state Nothing. The Update method will then
determine what the SCV should do. Usually the SCV will be set to mine minerals,
so it gets the state MiningMinerals.

Efficient Mining

To ensure that the bot will get the most minerals in relation to how many SCVs
it has, we have implemented a way to mine more efficiently by choosing the right
mineral or refinery to mine from. The following code snippet is from the method
SendToMineral, which sends a single SCV to a mineral patch.

1 int fewestScvs = 100;

2 int distanceToMineral = 10000;

3 BWAPI::Unit* bestMineral;

4
5❶ for(std::map <BWAPI::Unit*,int >:: iterator m = _workersOnMineral

.begin ();m != _workersOnMineral.end();m++)

6 {

7 if((*m).second < fewestScvs)

8 {

9 fewestScvs = (*m).second;

10 bestMineral = (*m).first;

11 distanceToMineral=scv ->getDistance(bestMineral);

12 }

13 else if((*m).second == fewestScvs && scv ->getDistance ((*m).

first)<distanceToMineral)

14 {

15 fewestScvs = (*m).second;

16 bestMineral = (*m).first;

17 distanceToMineral=scv ->getDistance(bestMineral);

18 }

19 }

20❷ _workersOnMineral[bestMineral]++;

21 _scvResourceGoals[scv]= bestMineral;

22 scv ->rightClick(bestMineral);

Listing 4.3: SendToMineral method

Each mineral patch and refinery are mapped to an int which represents how many
SCVs are using this patch or refinery. To find the best mineral patch every mineral
patch we are mining from is iterated through ❶ and checked if there are less SCVs
than the preceding mineral patch. The distance to this mineral patch is also saved
because there might be a mineral patch which has as few SCVs on the patch but is
closer. When the best mineral patch is found it is noted❷ that an additional SCV
is working on that mineral patch- After this we save the mineral to the SCV and
sends the SCV to mine the mineral patch by right clicking it.

Constructing Buildings

Below is the code that the Production Manager calls when it has a ConstructionTask
that needs to be executed. The method is called ConstructBuilding and has the
parameters of type UnitType and BuildingPlacement, where BuildingPlacement is
an enum that can have the values MainBase or MainChokepoint.

4.2 Managers 33

1❶ BWAPI :: TilePosition position = finder.FindBuildLocation(

buildingType ,placement);

2
3❷ BWAPI ::Unit* scv = GetAvailableScvNearPosition(BWAPI:: Position

(position.x(),position.y()));

4
5
6❸ SwitchState(scv ,WorkerManager :: Constructing);

7
8❹ buildingToConstruct building;

9 building[position] = buildingType;

10 _workersOnConstruction[scv] = building;

11 scv ->build(position ,buildingType);

Listing 4.4: ConstructBuilding method

To find a location to place a building we use an instance of the class Building-
PlacementFinder called finder (see ❶). This class can find a suitable location for
a building to be constructed in relation to the enumeration specified. After this
we find an SCV for the task ❷ by using the method GetAvailableScvNearPosition
which gets the nearest SCV that is not carrying minerals, mining gas, or construct-
ing buildings. With the position and an SCV the building can now be constructed.
The state of the SCV is changed to Constructing ❸, and we save the building in-
formation, so we are able to try again if it fails in constructing the building. ❹ is a
type containing a map between a position and a building type. After this the SCV
tries to construct the building.

4.2.3 Scouting Manager

The scouting manager is used to find the opponents base and obtain information on
what the opponent is doing. It uses a Bayesian network to find the most probable
location for the enemy base. At the beginning of the match evidence is instantly in-
serted on the ”OurSpawn” node of the Bayesian network. Whenever an opponent’s
worker is found, evidence for the worker location and current game time are placed
as evidence in the Bayesian network and our scout is sent to the new most prob-
able worker location. Once the scout finally finds the opponent’s base, it gathers
information on which buildings the opponent has in order to help predict the build
order.

4.2.4 Strategy Manager

This manager was supposed to be responsible for making high level decisions for the
bot, but we have not finished the manager completely. We have made the necessary
analysis needed to make these prediction. By using the class BuildOrderPredictor
we are able to retrieve the most probable build order and threat level.

Build Order Predictor Class

This class uses a Bayesian network to analyze what build order the enemy is cur-
rently doing. This is related to the current threat level which the strategy manager
retrieves.

The class is instantiated by loading the proper prediction network in relation
to the match up and saving the match up as a variable. The class have a public
method for updating the prediction network which then calls the proper method
for updating the correct network related to the current match up. The nodes in
the Bayesian network have similar names, so that the conversion from the unit type
to the node name can be done more easily. When an enemy unit is scouted the
strategy manager passes this to the BuildOrderPredictor which then tries to put
evidence on the correct node. Such a conversion can be seen below.

34 Implementation 4

1 if((building == BWAPI :: UnitTypes :: Terran_Academy ||

2 building == BWAPI :: UnitTypes :: Terran_Starport ||

3 building == BWAPI :: UnitTypes :: Terran_Barracks ||

4 building == BWAPI :: UnitTypes :: Terran_Factory)&&

5 enemyBuildingsOwned[building]==1)

6 {

7 // Converts the building type to how the nodes are written

8 std:: string nodeName = building.getName ();

9 nodeName.erase (0,7);

10 std:: remove(nodeName.begin(), nodeName.end(), ’ ’);

11 char buffer [2];

12 std:: string nodeNumber = itoa(1,buffer ,10);

13 predictionNetwork.EnterEvidence ((nodeName+nodeNumber),"Seen")

;

14 BWAPI::Broodwar ->printf("Updated the prediction network");

15 predictionNetwork.PrintMostProbableState("BuildChosen");

16 }

Listing 4.5: Conversion from unit type to node name

The code removes Terran string and the white spaces and saves it to a string. The
number of buildings of the type is converted to a string too. Then the evidence is
entered and prints the most probable build order.

4.2.5 Tactics Manager

The TacticsManager is responsible for managing the offensive units the bot owns.
When units of the same type are near each other they are saved to a Squad object.
The TacticsManager executes all the tactics of the Squad objects in it’s Update
method. This tactic that the squad executes are from the Reinforcement Learning
and Potential fields which will be explained in the next sections.

4.3 Implementing Potential Fields

In this section we are going to take a look at the implementation of the Potential
field. First we will look at the main loop and the general structure. Then we move
on to each part of the Potential field itself.

4.3.1 General Structure

The Potential field is calculated for individual units, these units belong to a squad.
When we calculate the Potential field we also pass a reference to the squad called
mySquad because it is needed to calculate Squad center and Ally Potential.

4.3 Implementing Potential Fields 35

1❶ BaseTactic :: InitializeParameters(mySquad);

2 Position centerPosition = _unit ->getPosition ();

3❷ std::list <BWAPI::Position > listOfPositions = MathHelper ::

GetSurroundingPositions(centerPosition ,48);

4 BWAPI:: Position bestQPosistion = BWAPI:: Position (1,1);

5❸ double centerQ = BaseTactic :: CalculateQPotentialField(_unit ->

getPosition (),false);

6 double higestQfound;

7 bool firstCalculation = true;

8❹ for each(BWAPI:: Position position in listOfPositions)

9{
10 double currentQ = BaseTactic :: CalculateQPotentialField(

position ,false);

11❺ if(firstCalculation)

12 {

13 firstCalculation = false;

14 higestQfound = currentQ;

15 bestQPosistion = position;

16 }

17 if(currentQ > higestQfound)

18 {

19 higestQfound = currentQ;

20 bestQPosistion = position;

21 }

22 //used to print the Potential around the unit

23 Broodwar ->drawTextMap(position.x(),position.y(),"%d" ,(int)

currentQ);

24}
25❻ if(centerQ == higestQfound)

26{
27 bestQPosistion = centerPosition;

28}

Listing 4.6: Main loop

In ❶ we initialize all the parameters because they are the same for all the tiles:

• int da - Is the distance to closed ally unit.

• int ds - The distance from center of army to unit.

• int sv - The units maximum shooting range. -1 if there is no weapon for this
type.

• int sva - The units maximum shooting range for air. -1 if there is no weapon
for this type.

• int de - Distance to nearest known enemy.

• bool wr - A boolean denoting whether or not the weapons are ready to fire.

• BWAPI::Position squadPos - The center of the squad.

They are all used in the calculation of the Potential field later in this section.

Next we need to find the tiles we want to calculate the Potential for. This is done
using the MathHelper::GetSurroundingPositions function in ❷. This function takes
two parameters, the tile the unit is currently on and the distance to the center of the
adjacent tiles. From this we calculate all tiles around the unit and and them to a list.

Now in ❸ we calculate the Potential for the center tile. This is used in ❻ to
compare it to the best Potential found. If they are equal we choose the center tile.
This is a rare case and mostly only occurs when all the Potential fields are zero.

36 Implementation 4

In that case we do not want to move. If we did not choose to make bestQPosis-
tion the centerPosition and returned any other tile, the unit would move to this tile.

In ❹ we have the main loop. This loop iterates trough all the tiles around our
unit and selects the highest one. There is one special case in ❺ which is the first
calculation. In this calculation we always select it as the current best option. This
is done so we have something to compare with rather than just set it to an arbitrary
tile and number.

In the calculation of the Potential field we use three different constants listed
below. These constants are initialized to a parameter we found by trial and error.

• variables.SQUADDISTANCE CONSTANT - Is set to 150 px.

• variables.ALLYDISTANCE CONSTANT - Is set to 50 px.

• variables.EDGESDISTANCE CONSTANT - Is set to 250 px.

An important thing to note before we look at the individual function is a small
change from the design. In the design we use negative forces in repulsive fields,
but due to the reinforcement learning this has changed. The reinforcement learning
will change the forces, and it will be able to make them both positive and negative.
In other words the reinforcement learning will be able to change whether or not a
Potential field is attractive or repulsive.

4.3.2 Squad Center

1❶ _parameters.dsv = pos.getApproxDistance(_parameters.squadPos);

2 int useSquad = 0;

3❷ if(_parameters.ds > _variables.SQUADDISTANCE_CONSTANT)

4 useSquad = 1;

5
6❸ squad += ((double)_variables.FORCESQUAD * (2*(double)

_parameters.ds -(double)_parameters.dsv))*useSquad;

7❹ squadQ += (2*(double)_parameters.ds -(double)_parameters.dsv)*

useSquad;

Listing 4.7: Squad center

In ❶ we calculate dsv by using the build in function getApproxDistance which re-
turns the distance between two tiles as an integer. pos is the current tile we want
to calculate the Potential for and squadPos is the tile in the center of the squad.

Then in ❷ we check weather or not to use the Squad center which depends on
the distance from the unit, know as ds, to the center of the squad. This is used to
handle the two cases found in the design of the Potential field.

Afterwards we calculate the Potential in ❸ where variables.FORCESQUAD is
fS . variables.FORCESQUAD is learned by the reinforcement learning in section
4.4. Unlike in the design we multiply useSquad on the end. This is to make it zero
if we do not want to use Potential field which would make the entire calculation
become zero. This is way to control that the use of the Potential field is not only
used in Squad center but also in all the other Potential fields.

squadQ in ❹ and likewise will be explained in the implementation of reinforce-
ment learning in section 4.4. The Squad center implemented and running can be
seen in figure F4-1.

4.3 Implementing Potential Fields 37

Figure F4-1: Squad center

4.3.3 Maximum Distance Positioning

1❶ int distanceToEnemyFromUnit = _parameters.de;

2❷ _parameters.due = MathHelper :: GetDistanceToNearestEnemy(pos);

3❸ int correctedDistance = (2* _parameters.de - _parameters.due);

4 int useMaxDist = 1;

5 if(_parameters.sv > distanceToEnemyFromUnit)

6 useMaxDist = 0;

7
8❹ maxdist += ((double)_variables.FORCEMAXDIST * (double)

correctedDistance)*(double)useMaxDist;

9 maxdistQ += (double)(correctedDistance)*(double)useMaxDist;

Listing 4.8: Maximum distance

In Maximum distance positioning we start by calculating de and duein ❶ ❷.
These are used to calculate (2 ∗ de− due) in ❸, known in the code as correctedDis-
tance.

correctedDistance is being calculated even if we do not use Maximum distance
positioning because it is also used in Weapon cooldown.

In ❶ and ❷ we make use of MathHelper::GetDistanceToNearestEnemy which is
a function that takes a tile as input and then iterates trough all visible enemies.
Then it calculates the distance to the nearest enemy and returns it.

The last thing to do is calculate the Potential which is done in ❹. The Maximum
distance positioning implemented and running can be seen in figure F4-2.

Figure F4-2: Maximum distance positioning

38 Implementation 4

4.3.4 Weapon Cooldown

1 int toCool = 1;

2 if(_parameters.wr)
3 toCool = 0;

4
5 cool += _variables.FORCECOOLDOWN*correctedDistance*toCool;

6 coolQ += correctedDistance*toCool;

Listing 4.9: Weapon cooldown

Weapon cooldown looks a lot like Maximum distance positioning and does almost
the same thing. The only difference is when they are applied. An example of
Weapon cooldown can be found in figure F4-3.

Figure F4-3: Repulsion from Weapons Cooldown

4.3.5 Ally Units

1❶ _parameters.dua = MathHelper :: GetDistanceToNearestAlly(pos ,

_unit ->getID());

2 int useAlly = 0;

3 if(_parameters.da < _variables.ALLYDISTANCE_CONSTANT)

4 useAlly = 1;

5
6 ally += (double)_variables.FORCEALLY *(double)(2* _parameters.da

- _parameters.dua)*useAlly;

7 allyQ += (double)(2* _parameters.da - _parameters.dua)*useAlly;

Listing 4.10: Ally units

In Ally units at ❶ we use a function called MathHelper::GetDistanceToNearestAlly
which takes as input a tile position and the id of the current unit. We need the
unit id because the function iterates trough all our units, and we want to avoid
calculating the distance to the current unit. If we did not use the unit id we would
always get the distance from the current unit to itself because the distance would
always be less than the distance to other units. Ally units can be seen in figure
F4-4.

4.3 Implementing Potential Fields 39

Figure F4-4: Repulsion of ally units

4.3.6 Edges and Cliffs (Repulsive)

1❶ _parameters.duc= (int)MathHelper :: GetDistanceBetweenPositions(

BWTA:: getNearestUnwalkablePosition(pos),pos);

2❷ _parameters.dc = (int)MathHelper :: GetDistanceBetweenPositions(

BWTA:: getNearestUnwalkablePosition(pos),_unit ->getPosition ()

);

3
4 int useEdge = 1;

5 if(_parameters.duc > _variables.EDGESDISTANCE_CONSTANT)

6 useEdge = 0;

7
8 edge += (_variables.FORCEEDGE)*(2* _parameters.dc-_parameters.

duc)*useEdge;

9 edgeQ += (2* _parameters.dc -_parameters.duc)*useEdge;

Listing 4.11: Edges and cliffs

In ❶ we use the function MathHelper::GetDistanceBetweenPositions to get the dis-
tance between the nearest unwalkable position and the current tile. To get the near-
est unwalkable position we use the built in function BWTA::getNearestUnwalkablePosition
which takes as input a position and then find the nearest unwalkable position.

Normally dc from ❷ would be calculated in the initialization, but because
BWTA::getNearestUnwalkablePosition should depend on the current tile we have
to recalculate it for each tile. The reason is that for each tile the nearest unwalkable
position can differ, and we need to use the same unwalkable position in the calcu-
lation of the center tile. If we didn’t do this, there could be cases where we took
the wrong tiles into consideration. An example could be a corner, where some tile
would depend on one side, and other tiles on the other side. The Edges and cliffs
can be seen in figure F4-5

Figure F4-5: Repulsion from cliffs

40 Implementation 4

4.4 Q̂-Learning

In this section we will address the implementation of the Reinforcement Learning
Approximation. First we will explain the ReinforcementLearning class and the
methods that calculate the value of the Q̂ function and updating rules. Then we
go through all the necessary calculations made throughout the game to create the
data needed in order to use this class and save the relevant information for testing.

The ReinforcementLearning class contains all the variables and processes nec-
essary to calculate all the formulas of the Q̂learning. It is used throughout the
game to update each coefficient of the Q̂f function, calculate the reward for each
state-action pair and saving all the necessary data to continue the calculations in
the next iteration of the game (also for saving a data log with all the numbers for
further analysis and testing). Further detail of the class implementation can be
found in the appendix section 8.7.

4.4.1 Q̂f Decision

Throughout the game, the squad management uses the Q̂f method
GetBestPositionBasedOnQPotential in order to select the next action. It starts

with saving the value off all the derivatives (
∂Q̂f (a,s)
∂fi

). This part is explained in
detail in the implementation for every one of the Potential fields.

1 _parameters.dua = MathHelper :: GetDistanceToNearestAlly(pos ,

_unit ->getID());

2 int useAlly = 0;

3 if(_parameters.da < _variables.ALLYDISTANCE_CONSTANT)

4 useAlly = 1;

5
6 ally += (double)_variables.FORCEALLY *(double)(2* _parameters.da

- _parameters.dua)*useAlly;

7❶ allyQ += (double)(2* _parameters.da - _parameters.dua)*useAlly;

Listing 4.12: Ally units

Every time a Potential field is calculated we save the values that correspond to
the derivative. In the code shown before for the Ally Units Potential the derivative
corresponds to the value of allyQ in ❶. We do the same thing to calculate the rest
of the derivatives (edgeQ, squadQ, coolQ, maxdistQ). Finally just saving them for
the future update calculations.

1 StarcraftAI :: reinforcementLearning.WriteLiveValue(allyQ);

2 StarcraftAI :: reinforcementLearning.WriteLiveValue(squadQ);

3 StarcraftAI :: reinforcementLearning.WriteLiveValue(maxdistQ);

4 StarcraftAI :: reinforcementLearning.WriteLiveValue(coolQ);

5 StarcraftAI :: reinforcementLearning.WriteLiveValue(edgeQ);

Listing 4.13: Saving the values of each derivative

After saving all the derivatives values for the updating rules, continues with
the calculations for the Q̂f (a, s) as shown before in the Potential fields section 4.3.

Finally it calculates the value of maxQ̂f (a′, s′)). The code used for this calculation

follows the same pattern explained for the Q̂f (a, s) function, the only difference

being that the center point the previously calculated Q̂f (a, s).

4.4.2 Reward Function

CalculateReward Method : This method applies the formula explained in section
3.5.1 for calculating a reward. This method is called through several frames in the

4.4 Q̂-Learning 41

game to calculate the reward value needed for the update function methods.

1 double ReinforcementLearning :: CalculateReward(std::set <BWAPI ::

Unit*> squad)

2{
3❶ // ___

4 double reward = 0.0;

5 double maxEnemieHealth = startingEnemies *

startingEnemyMaxHealth;

6 double maxUnitHealth = startingUnits * startingUnitMaxHealth;

7 double enemyCurrentHealth = 0.0;

8 double currentUnitHealth = 0.0;

9 double numberOfEnemies = 0.0;

10 double squadSize = 0.0;

11❷ // ___

12 std::set <BWAPI:: Player*> enemies = BWAPI::Broodwar ->enemies ();

13 std::set <BWAPI::Unit*> enemieUnits;

14
15 for(std::set <BWAPI:: Player *>:: const_iterator i = enemies.begin

(); i != enemies.end(); i++)

16 {

17 std::set <BWAPI::Unit*> tempUnits = (*i)->getUnits ();

18 for(std::set <BWAPI::Unit*>:: iterator j = tempUnits.begin(); j

!= tempUnits.end(); j++)

19 {

20 enemieUnits.insert ((*j));

21 numberOfEnemies ++;

22 }

23 }

24❸ // ___

25 for(std::set <BWAPI::Unit*>:: iterator j = squad.begin(); j !=

squad.end(); j++)

26 {

27 if((*j)->exists ()) squadSize ++;

28 currentUnitHealth += (double)(*j)->getHitPoints ();

29 }

30❹ // ___

31 for(std::set <BWAPI::Unit*>:: iterator j = enemieUnits.begin();

j != enemieUnits.end(); j++)

32 {

33 enemyCurrentHealth += (double)(*j)->getHitPoints ();

34 }

35 // ___
36❺ reward = c1 * (startingUnits - squadSize) + c2 * (

maxUnitHealth -currentUnitHealth) + c3 * (maxEnemieHealth -

enemyCurrentHealth) + c4*(startingEnemies -numberOfEnemies)+

c5*(BWAPI ::Broodwar ->getFrameCount ());

37
38❻ return reward /1000;

39}

Listing 4.14: CalculateReward Method

This method begins with the initialization of all the values needed for the reward
formula (contained in section ❶). The values use some of the already indicated
constants in the class fields (view the Field Summary here 8.7).

In section ❷, we obtain the array of all the enemy players (enemies) and create
an array of saving all the enemy units (enemyUnits). Then we iterate through the
enemy players and save each of their units in the enemyUnits array also counting
the numberOfEnemies.

42 Implementation 4

In section ❸, we iterate through the squad (received as a parameter) to count the
squadSize and accumulate the total currentUnitHealth. Similarly, in section ❹,
we iterate through the enemieUnits to accumulate the total currentEnemyHealth.

Then we use all the previous calculated values to evaluate the reward function in
❹. Note that we already indicated in the Field Summary which constant value we
used for each coefficient. We choose those specific values because they seem to re-
flect a reward/punishment value correspondent to what we want our agent to learn.
Finally, also note that we use this reward value scaled, or reduced (as observed in
❺), to impact the rate of change of the updating formulas and reduce it slightly.

4.4.3 Updating Rules

CalculateTheta Method : This method simply applies the formula explained before in
Q̂ learning (see reference 3.5.1). It corresponds to the updating rule for Q-learning
function approximation considering temporal difference.

1 double ReinforcementLearning :: CalculateTheta(double theta ,

double reward ,double currQ , double nextQ , double derivative)

2{
3❶ double newtheta = theta + alpha * (reward + gamma * nextQ -

currQ) * derivative;

4 return newtheta;

5}

Listing 4.15: CalculateTheta Method

In section 3.5.1 there are several different formulas for updating each coefficient
in the Q̂f function, but that distinction between updating rules is external to the
ReinforcementLearning class. Therefore, the formula directly translated in ❶ is
the general updating rule. The specific Q̂ value, current coefficient and the rest
of the parameters are calculated separately because we need them in every frame
throughout the game.

Calling the Updating Rules

We choose to calculate new weights or coefficients for the Q̂f function every n
frames. Trying to update for every single one created a lag in the performance of
the game. The optimization we created for updating while still preserving the game
speed is the following:

4.4 Q̂-Learning 43

1❶ if(BWAPI ::Broodwar ->getFrameCount () % 25 == 0){

2❷ \\ __

3 double* liveBufferPointer = StarcraftAI ::

reinforcementLearning.GetLiveBuffer ();

4 int liveCount = StarcraftAI :: reinforcementLearning.

GetLiveCount ();

5 StarcraftAI :: reinforcementLearning.ClearLiveBuffer ();

6 \\ __

7 double edge , cool , mde , squad , ally , currQ , nextQ , reward;

8
9❸ for(int i=0; i<liveCount; i++){

10 switch(i%8)

11 {

12 case 0:

13 ally = liveBufferPointer[i];

14 break;

15 case 1:

16 squad = liveBufferPointer[i];

17 break;

18 case 2:

19 mde = liveBufferPointer[i];;

20 break;

21 case 3:

22 cool = liveBufferPointer[i];

23 break;

24 case 4:

25 edge = liveBufferPointer[i];

26 break;

27 case 5:

28 currQ = liveBufferPointer[i];

29 break;

30 case 6:

31 nextQ = liveBufferPointer[i];

32 break;

33 case 7:

34 reward = liveBufferPointer[i];

35 ❹ \\ ______________________________________

36 _thetas.edge = ReinforcementLearning :: CalculateTheta(

_thetas.edge ,reward ,currQ ,nextQ ,edge);

37 _thetas.cool = ReinforcementLearning :: CalculateTheta(

_thetas.cool ,reward ,currQ ,nextQ ,cool);

38 _thetas.mde = ReinforcementLearning :: CalculateTheta(

_thetas.mde ,reward ,currQ ,nextQ ,mde);

39 _thetas.squad = ReinforcementLearning :: CalculateTheta(

_thetas.squad ,reward ,currQ ,nextQ ,squad);

40 _thetas.ally = ReinforcementLearning :: CalculateTheta(

_thetas.ally ,reward ,currQ ,nextQ ,ally);

41 \\ ______________________________________

42 break;

43 default:

44 break;

45 }

46 }

47 }

Listing 4.16: Calculations for the Updating Function Values

44 Implementation 4

In the first place, we make these calculations every 25 frames as shown in ❶, trying
to simulate updating once a second. Then we use some of the methods in the
ReinforcementLearning class (indicated in section ❷) to call all the values that
were previously saved in the data buffer. This values includes all the above explained
derivatives and Q̂f values. We separate the values, as shown in ❸ and then save
them in variables for parameter passing to the updating function. Finally in section
❹ we use the ReinforcementLearning :: CalculateTheta method that corresponds
to each of the weights and coefficients of the new Q̂f .

Chapter 5

Tests

In this chapter we will look at a few different tests. First we will test the built in AI
against itself, so we have a base to compare our bot against. Then we will make a
test using the potential field without any learning and a test with the same number
for all the forces. Afterwords we will use reinforcement learning to try to improve
our results. We will try and change the alpha and gamma to change the way our
bot learns to see the difference. Afterwords we will test the Bayesian networks to
see how well they perform.

5.1 Test Without Reinforcement Learning and Potential
Fields

In this test the two forces are just attacking each other without any use of potential
fields or reinforcement learning. This test is without any micromanagement control.
This means the vultures are losing in both maps. They should lose so we can prove
that if a unit is being controlled correctly victory is possible. Below is a list of the
results from the test in the two maps.

After this first test we know how weak the player with the vultures is compared
to the opponent

5.2 Test Using the Potential Fields Without Reinforcement
Learning

This is the first test where our bot uses only potential fields to fight the built-in
bot. There is no reinforcement learning used in this test. In other words this means
that the reinforcement learning weights are all set to a constant value.

Our bot got this impressive result by not overextending itself and thereby only
be in sight of a few Zerglings. This forced some Zerglings out of the group and
made them an easy target. This test went better than expected because it took out
a few Zerglings at a time and won the match with 5 vultures with full health.

Test results from first map
Players Produced units Killed units Lost units

Player with vultures 5 9 5
Player with Zerglings 30 5 5

Test results from second map
Players Produced units Killed units Lost units
Player with vultures 5 5 5
Player with marines 20 5 5

46 Tests 5

Test results from second map
Players Produced units Killed units Lost units

Player with vultures 5 30 0
Player with Zerglings 30 0 30

Test results from second map
Players Produced units Killed units Lost units

Player with vultures 5 6 5
Player with marines 20 5 6

The result from this test wasn’t as good as one would expect. The result of the
vultures moving back and forth should be way better than static movement. But
the fact is that the vultures only killed one more marine. The reason why this is
the case is that the vultures couldn’t use the same attack pattern as effectively as
with the Zerglings because the marines range attack sometimes dealt damage to the
vultures. So the vultures get to close before attacking. We see from this test that
potential fields in itself are not enough. If we would like to win or have less of a loss
than the opponent. In the next test we will test if there is an improvement by using
reinforcement learning on the bot. Since the vultures did well against Zerglings the
tests will be changed to only be vultures against 12 marines. If they should learn
with more marines the vultures will learn that it’s okay to run away and only attack
when the cooldown is 0, and this is not the right way to defeat the opponent.

5.3 Comparing α and γ Values

This section is about the tests with the learning rate of the agent. The more
thorough explanation of the generalization can be read in section 3.5. By changing
the γ and α values the agent will learn differently, so we have made a test where we
run between 15000 to several hundred thousand iterations. All the test have been
run with 5 vultures against 12 marines. The graphs from the test can be seen in
full size in the appendices chapter 8. We will make tests over how much damage
the vultures have dealt, how many units we have lost, and how many units we have
killed. As mentioned before these test will be performed with different learning
values. It is worth mentioning that 5 vultures against 12 marines is a very difficult
battle for the vultures, and the marines are favoured to win.

Learning Rate Test 1.1

In this test we are using the following values in the table T5-1 for the reinforcement
learning. Iterations occur every time the agent has played a game on our test map.

Alpha value (α) Gamma value (γ) Iterations
0.9 0.2 40182

Table T5-1: Alpha and Gamma values for the learning algorithm

The figures shown in the test can be watched full sized in the appendix chapter
8.

In figure F5-2 the blue graph is how many marines were killed. When it peaks
to the 12 mark our agent has won a battle.

In figure F5-1 one can see every time the y-axis peaks (blue graph) the agent
has killed all of the opponents like we had hoped for. The red graph is damage
taken. If it’s on 400 all the 5 vultures have died, and the agent has had a lost.

5.3 Comparing α and γ Values 47

Figure F5-1: Alpha 0.9 Gamma 0.2 Damage - Blue: Damage given - Red: Damage
taken (Can be seen fullsized here F8-2)

Figure F5-2: Alpha 0.9 Gamma 0.2 Lost and killed - Blue: Enemies killed - Red:
Vultures left (Can be seen fullsized here F8-3)

Average results from test 1.1
Damage taken Damage given Units lost Enemies killed
392,71 337,26 4,79 7,51

Table T5-2: Average numbers of A9G2

Comparing the Potential field data with winning streaks could tell us how the
agent reacts when it wins. Damage taken and damage given are self explanatory,
but the rest are all values of the Potential fields. Ally is how far away each of
our own vultures can be from each other. A negative value means repulsive and a
positive value means attractive. The squad value is similar to the ally value but the
squad means the center point in the group of units. The maximum distance is the
distance to an enemy. The value is only for the Potential fields and not real distance
to the enemies. Cooldown is when the vultures have fired. They use the cooldown
value if they should be attracted to the enemy or not. Finally the edges are how
attractive or repulsive the vultures are to the edges. Just like before, negative values
mean repulsive and positive values mean attractive.

48 Tests 5

Average results from test 1.2
Damage taken Damage given Units lost Enemies killed
392,35 334,26 4,79 7,44

Table T5-4: Average numbers of A6G4

Learning Rate Test 1.2

In this test we are using the following values in the table T5-4. Here we try with
different values in the learning algorithm to see which ones would fit the best and
which values make the agent learn or converge the fastest.

Alpha value (α) Gamma value (γ) Iterations
0.6 0.4 17992

Table T5-3: Alpha and Gamma values for the learning algorithm

Figure F5-3: Alpha 0.6 gamma 0.4 Damage - Blue: Damage given - Red: Damage
taken(Can be seen fullsized here F8-4)

In figure F5-3 just as before but with different α and γ values the agents graph
over it’s performance.

Figure F5-4: Alpha 0.6 Gamma 0.4 Lost and killed - Blue: Vultures left - Red:
Marines killed(Can be seen fullsized here F8-5)

Comparing the tests T5-2 and T5-4 one can see that the agent needs several
more iterations than it has right now. Since it’s not converging from just 40000
iterations. The next tests will be with around 100000 iterations. After that amount
of time we can be more certain that it’s near converging. The average values are

5.3 Comparing α and γ Values 49

Average results from test 1.3
Damage taken Damage given Units lost Enemies killed
395,51 338,29 4,86 7,52

almost the same which tells us that either it needs way more iterations or the small
change in the values does not give a huge difference.

Learning Rate Test 1.3

In this test we are using the following values in the table T5-5.

Alpha value (α) Gamma value (γ) Iterations
0.4 0.6 135936

Table T5-5: Alpha and Gamma values for the learning algorithm

Figure F5-5: Alpha 0.4 gamma 0.6 Damage - Blue: Damage given - Red: Damage
taken(Can be seen fullsized here F8-6)

Figure F5-5 is just as before but with different α and γ values the agents graph
over it’s performance.

Figure F5-6: Alpha 0.4 Gamma 0.6 Lost and killed - Blue: Vultures left - Red:
Marines killed(Can be seen fullsized here F8-7)

50 Tests 5

The table in the appendix T8-1 shows some numbers when the agent have had a
winning streak. All the values get saved after every iteration, and the last 5 values
are the potential fields [Ally, Squad, Maximum distance, Cooldown, Edge] and the
first 2 values shows [Damage Dealt, and Damage Taken]. One can see that the
damage given are very high and the ones with 480 in damage given is when the
vultures have won over the 12 marines. The values are taken from iterations 214385
to 214392. Iterations are saved every time there has been a won, draw or loss. By
looking at the numbers in ally and squad we can see that the units like to stick to
each other, in other words they like to team up. The reinforcement learning have
changed the values and it found out that sticking together is better than dealing
with a bunch of marines on it’s own. The maximum distance, which means the
attractive level towards the marines, are very high in a negative value which makes
them very attracted towards the marines and in other words very aggressive. The
cooldown is a high positive value which means that when the vultures have fired
their weapons they use the potential field of cooldown, which means they get re-
pulsed by the enemies when they are in a cooldown.

The table in the appendix T8-2 also shows a winning streak but this time is in
the later stages this is a portion from iterations 260284 to 260291 to compare the
numbers with the early stages in winning streak tests T8-1, than the later stages
here in test T8-2. One can see that the numbers differs in many ways, ally is higher
than it was in the previous test, but then the squad values doesn’t differ that much
from the early stages T8-1. The maximum distance is attracted towards the enemy
which means they have an aggressive behaviour, and by looking at the values of
the edges, the vultures are attracted to the cliffs and edges. The cooldown value is
a positive number as it’s supposed to be, because the vultures should attack and
then withdraw until the cooldown has settled.

Learning Rate Test 1.4

In this test we are using the following values from the table T5-6.

Alpha value (α) Gamma value (γ) Iterations
0.2 0.9 30852

Table T5-6: Alpha and Gamma values for the learning algorithm

Figure F5-7: Alpha 2 gamma 9 Damage - Blue: Damage given - Red: Damage
taken(Can be seen fullsized here F8-8)

In figure F5-7 just as before but with different α and γ values the agents graph
over it’s performance.

Comparing tests 1.4 and 1.3 where the 1.3 test has run 135936 iterations one
can clearly see that the average damage dealt is higher than from the test 1.4 where

5.4 Convergence Analysis 51

Figure F5-8: Alpha 2 Gamma 9 Lost and killed - Blue: Vultures left - Red: Marines
killed(Can be seen fullsized here F8-9)

Average results from test 1.4
Damage taken Damage given Units lost Enemies killed
398,78 282,28 4,96 6,31

Table T5-7: Average numbers from A2G9

the iterations are 30852 times. To make the agent converge is has to run even more
iterations. If we cut the test 1.3 down to 30852 iterations and compare the numbers
again it has an average of Damage taken: 396,05 - Damage given: 324,81 which is
closely to the tests with few iterations.

The table T8-3 shows some numbers when the agent have had a winning streak.
One can see that the damage given are very high and the ones with 480 in damage
given is when the vultures have won over the 12 marines. The values have been
saved from the agent in the iterations 208280 to 208288. By looking at the numbers
in ally and squad we can see that the units like to stick to each other, in other words
they like to team up. The reinforcement learning have changed the values and it
have found out that sticking together is better than dealing with a bunch of marines
on its own. The maximum distance, which means the attractive level towards the
marines, are very high in a negative value which makes them very attracted towards
the marines and in other words very aggressive.

The table T8-4 also shows a winning streak but this time is in the early stages
this is only a cut out from 40081 to 40086 iterations to compare the numbers with
the later stages in winning streak tests T8-3, than the early stages here in test T8-4.
One can see that the numbers differs in many ways, ally is not that high as it was
in the previous test, but then the squad values are high but still not as high as from
the other test T8-1. The maximum distance is repulsed from the enemy, and by
looking at the values of the edges the vultures are attracted to the cliffs and edges
and repulsed by the marines. The cooldown is not that interesting to talk about it
has the same drop in value as the other values.

5.4 Convergence Analysis

As mentioned before, we considered a lower α value and a higher γ value would
deliver better results in the training for the Reinforcement learning agent. There-
fore we prioritized the training of two particular combinations of them: α = 0.4 -
γ = 0.6 and α = 0.2 - γ = 0.9. We ran a couple hundred thousand game iterations
in each one of these training values. The results obtained from this training show
the different trends the weights follow throughout the entire learning process. We
considered it important to analyze this behaviour to show the training results for

52 Tests 5

our agent.

Convergence for α = 0.2 and γ = 0.9

By convergence we mean that the agent has found the perfect values that work
every time. In other words, the agent learns to get the highest reward. In figure
F8-11 one can clearly see that the agent tries with different values and after the
almost 250.000 iterations it’s beginning to narrow them down to a more stable line
instead of trying higher values. The blue line which says edge has a drop way below
zero, and that might be a buffer overflow, but if we only look at the ally and squad
we can see that the agent learned that sticking together in a group is better than
attacking marines individually. The cooldown is beginning to have a more stable
line which means that the agent learned that after firing, its good to flee to avoid
getting injured. The maximum distance is not as high as we expected, since the
higher it is the more aggressive the vultures are. Even more iterations could perfect
these numbers to a convergence and the vultures would then win every game.

Convergence for α = 0.4 and γ = 0.6

As shown in figure F8-10, the weights followed a consistent learning pattern through-
out most of the iterations. The first thing the agent learns is that maintaining the
squad tightly together (high values of Ally and Squad weights), running from the
enemy (low MaxDist weight) and running towards the edges (high Edge weight)
delivers the best result (higher number of kills and less damage). But, since we
made our reward function punish the agent for taking a long time to destroy the
enemy, the weights always adapt trying to make the units more aggressive (it can
be observed in the changing values of the MaxDist weight).

It goes back and forth between running and attacking up front until it finally
stabilizes in very high values of Ally and Squad (staying together), almost identical
values of Cooldown and MaxDist (attack with the same strength that you run away
when the weapons are down) and not having a very strong opinion about the Edge
(this weight is the closest to 0 and varies around it). We definitely need to keep
running training sessions for this values to converge fully but we believe the agent
is reaching a consistent point. It manages to win or kill a high number of marines
periodically.

5.5 Spawn Prediction Test

In these test we wanted to make sure our spawn predicting Bayesian network had
the Potential to accurately predict the enemy’s spawn.

We tested our bot first against itself. This was useful because we could check
two sets of data for each game ran. By default without encountering an opponent’s
scout our SCV would go in order to bases NE, SE, SW, NW. Our hopes were that
our scout would change direction upon encountering the opponent’s scout. In our
test we observed that our bot’s belief on enemy base position would change when
encounter the opponent scout. However, the new probabilities did not effect the
bot’s belief enough to change the current path. This is due to the fact that we
manually entered the probability tables for the Bayesian network without knowing
too well what the actual probabilities were. To get the bot to better predict the
enemy spawn we would have to change the probabilities probably through machine
learning.

We also did some test against our bot when a human played as the other player.
This way we could manipulate the time and position that our bot would encounter
the opponent scout. This test had similar outcomes as when our bot played against

5.6 Build Order Prediction Test 53

itself. This further supports our belief that this network has Potential even if it
does not current function perfectly.

5.6 Build Order Prediction Test

These test are meant to show the ability of our Build Order Bayesian network to
successfully predict an opponent’s build order. During these tests we had a human
player play against our bot. The human player would play using a specific build
order that the bot should be able to predict. Once the bot scouted, it would use
the information obtained from the buildings seen and print out the build order. We
keep a list of all of the enemy buildings we have seen. Once we see a new building
we add to our list and update our Bayesian network.

The bot did successfully predict the build orders. When the bot’s SCV first scouts
and only sees a few of the buildings to support a particular build order, it will
increase the probability for some of the builds. For example, when the scout was
inside the enemy base, the probability that the build was a one factory expand build
and a two factory pressure build both increased to about 50% with the one factory
expand being slightly favoured. Once the scout was able to see the second command
center the probability of a one factory expand increased to 100% as shown in F5-9.

The build order predictor works fairly well, but still has some needed improve-
ments. First off there could be a build order we have not included in the Bayesian
network. If the bot encountered an unknown build it would treat it as one of the
builds in the network and may not act in a responsible way. Another problem is if
we do not collect any information on the enemy at all. The bot’s scout could get
killed before getting any information on the enemy base. This would give us the
belief that there is an equal chance for all of the different builds so the bot may not
act correctly.

Figure F5-9: Predicting one fact expand build upon seeing second command center

5.6.1 Prediction of Threatlevel test

In this test we wanted to see if the prediction network could analyze what he
current threatlevel is based on what it sees and what the time is. The bot scouts
the opponent and sees 2 hatcheries, which it predicts is going to be a 3 Hatch Muta
build. Because that build is effective later in the game the network predicts the
current threatlevel to low. In the picture below (See F5-9) this situation is shown.
This test just showed that the network worked exactly as assumed.

54 Tests 5

Figure F5-10: Predicting the current threatlevel

Chapter 6

Conclusion

In this chapter of the report we summarize all the work done, and in what measure
our goals were fulfilled.

For this project we wanted to create an intelligent bot that can play Starcraft
Broodwar. With this idea in mind, we constructed two different intelligent char-
acteristics. The first one is the making of decisions during a real-time combat. It
takes this decisions using reinforcement learning Q approximation and potential
fields. The second one is the prediction of build orders and analysis of threat level.
We accomplish this task by using Bayesian networks.

Addressing the Reinforcement learning tests. In the results for bot with different
alpha and gamma values, we can conclude that a lower alpha value, and a higher
gamma value is the best for learning fastest in our environment. We have noticed
that it takes several hundred thousand of iterations before it converges. It has
learned how to play against the marines and has several wins after playing against
the marines for playing about 250.000 iterations.

The Bayesian networks that are implemented are very simple, which means that
the bot will only be able to recognize a small set of build orders. Even if these
networks were made more complex, there will always be build orders which will
not get recognized. So enabling the bot to recognize the most known build orders
seems sufficient. The Reinforcement learning and Potential fields merge preformed
as expected. The bot can control the units more efficiently than a human player,
and it learns continuously to better achieve the goal of killing all the enemy units.

Another of our goals was to effectively apply Machine Intelligence theories in
the modelling of our bot, which goes hand in hand with the third goal we defined
in the problem statement, create a bot that improves by playing Starcraft Brood-
war. This goal was achieved with the Reinforcement learning merge with Potential
fields. We started defining the potential fields’ vectors for modelling the movement
of our units and then using this completed product to create the Q-function of
our Reinforcement Learning. By doing this merge we managed to create a simple,
linear, and comprehensive function that models the combat environment in Star-
craft Broodwar. With this function the Reinforcement learning algorithm had all
the elements needed to learn and improve. After several training sessions our bot
manages to increase the number of kills and almost converge to the true values for
the Q-function and Potential.

The Bayesian networks predictions are not improved by playing. All the proba-
bilities for the networks are obtained from replays with professional Starcraft play-
ers. The numbers might be unrealistic, but as we showed in the test of these
networks, it was able to predict the right build order and threat level. But it would
definitely be improved using data mining from several match replays.

56 Conclusion 6

We also described that we wanted to make a full bot, completely able to play a
normal game against another player. And in theory, the bot is able to do this. But
for it to preform well, better techniques and more precise information is needed in
the Strategy Manager and the placing of buildings. The Strategy Manager can not
control the other managers as we intended completely. The Reinforcement learning
and potential fields only work well for the training maps right now and not for
the normal maps, because it has not been trained to move in environments where
there are buildings and other units that can block the path. Nevertheless, if the
managers controlled the game enough to only activate the reinforcement learning
and potential fields when needed, the bot could be used in real games.

We were successfully able to use Machine Intelligence to create a bot in Starcraft
Broodwar, that fulfilled the goals we created for it.

Chapter 7

Future work

7.1 Future Work on Potential Fields

If we had more time to work on the Potential fields they could use a lot of adjust-
ments. They work well for our test case against the marines, but when used in most
normal maps during a real game they need to take a lot more things into account.
An example would be buildings, right now they are not mapped in the Potential
field, so the units will not take them into account only choose not to move directly
on top of them due the the tile being invalid. The same goes for mineral patches
and gas geysers.

We could look into adding more Potential field for all kind of scenarios, for low
health etc. This should make the bot even more cleaver but it would also mean
more variables to learn and we would need to relearn all the other variables. The
low health vultures should be repaired by a SVN, which mean that a SVN should
stop mining

Another thing to look at would be using a different set of forces for different
scenarios, like defending the base and attacking other bases. And learning different
numbers for different kind of units. There should not be anything in the way of
using the Potential field on other kind of units.

We could also use more time adjusting the constants we filled in our selves1, to
try and see what works best.

As we later found out the vultures have a movement speed upgrade, this could
be interesting to test the effect the upgrade would have on the variables in rein-
forcement learn.

7.2 Future Work on Reinforcement Learning

If we had more time to work on this project there are quite a few thing we would
like to try out. First of all we would like to consider different rewards function, to
see how that would impact the learning. Right now we only consider the same five
variables in the reward function, mainly the total health of the squad and squad
sizes. But we would considerer the percentage of health of each unit, to make it
try to distribute the damage more. Or just something as simple as trying with our
current reward function but with different numbers.

In the Potential fields we only consider distances, and all calculations are done
for one unit at a time. We would look at during the calculations for the entire group
at ones. To make them do what is collective best for the group. And instead of just
considering distances we would consider the health of a unit, so that units on low

1Size of the squad, minimum distance to ally and maximum distance to the edges

58 Future work 7

health will be more defence then units with full health.

Another thing to look at would be the enemies race or even the type of units
we fight. Right now we use the same forces no matter who or what we fight. But
it would most likely preform better if we learned different set of numbers of each
different kind of unit.

The last thing we would like to do is keep the bot running until all the forces
has converged.

7.3 Future Work on Prediction Networks

The project we use Bayesian networks for prediction of the enemy base position, the
enemy’s buildorder and the current threatlevel. It is hard to make the prediction
of the enemy base position, because not a lot of data can be analyzed in the first
minutes in the game. The SCV have to go from base to base until it finds the
opponent’s base and there is no way to improve this, because the bot have fog of
war. The Bayesian networks is made for predicting the buildorder of the enemy, yet
it is very simple and can only predict a few buildorders, so if the enemy is using a
build that is not in our network it can not predict it. Both these networks could be
better at predicting by using data mining. If the bot could train the networks by
watching replays or by using the data from a replay. If we had more time we would
make the buildorder prediction more precise using a node for early game, mid game
and late game. That way it will be a better identification of the buildorder and of
the current threatlevel.
We could have liked to use Bayesian network for is predicting when the opponent
is going to attack. This would be based on what infomation the bot gets from
scouting, where the must importent node in the Bayesian network would be the
build order and the units the opponent have.

Chapter 8

Appendices

8.1 Picture of a Normal Game

Figure F8-1: A normal Game

60 Appendices 8

8.2 A9G2

Figure F8-2: Alpha 9 Gamma 2 damage - Blue: Damage given - Red: Damage
taken

8.2 A9G2 61

Figure F8-3: Alpha 9 Gamma 2 units lost and killed - Blue: Enemies killed - Red:
Units lost

62 Appendices 8

8.3 A6G4

Figure F8-4: Alpha 6 Gamma 4 damage - Blue: Damage given - Red: Damage
taken

8.3 A6G4 63

Figure F8-5: Alpha 6 Gamma 4 units lost and killed - Blue: Enemies killed - Red:
Units lost

64 Appendices 8

8.4 A4G6

Figure F8-6: Alpha 4 Gamma 6 damage - Blue: Damage given - Red: Damage
taken

8.4 A4G6 65

Figure F8-7: Alpha 4 Gamma 6 units lost and killed - Blue: Enemies killed - Red:
Units lost

66 Appendices 8

8.5 A2G9

Figure F8-8: Alpha 2 Gamma 9 damage - Blue: Damage given - Red: Damage
taken

8.5 A2G9 67

Figure F8-9: Alpha 2 Gamma 9 units lost and killed - Blue: Enemies killed - Red:
Units lost

68 Appendices 8

Figure F8-10: Alpha 4 Gamma 6

8.5 A2G9 69

Figure F8-11: Alpha 2 Gamma 9

70 Appendices 8

8.6 Winning Streak

A4G6 winning streak 1
D. taken D. given Ally Squad Max. dist. Cooldown Edge

380 480 2.39033e+006 1.40153e+006 -282631 698463 277493
392 480 2.39e+006 1.40181e+006 -278968 696251 274540
400 300 2.39058e+006 1.4019e+006 -273958 698558 279631
400 380 2.39196e+006 1.40196e+006 -268354 705666 293743
368 480 2.39249e+006 1.40228e+006 -264404 708283 296838
400 360 2.39315e+006 1.40233e+006 -260781 711552 301867
400 340 2.39447e+006 1.40238e+006 -256977 719614 312891
324 480 2.39407e+006 1.40262e+006 -256418 716551 307314

Table T8-1: First winning streak of A4G6

A4G6 winning streak 2
D. taken D. given Ally Squad Max. dist. Cooldown Edge

368 480 4.09754e+006 1.551e+006 -423034 341397 -173826
400 320 4.09229e+006 1.55017e+006 -487204 339150 -196334
392 480 4.09461e+006 1.55022e+006 -405424 342703 -194759
400 320 4.09038e+006 1.5499e+006 -469782 340807 -193842
398 480 4.09328e+006 1.5499e+006 -400091 344188 -178773
386 480 4.09453e+006 1.55029e+006 -384631 348976 -172204
400 340 4.0933e+006 1.55037e+006 -416490 348259 -183012

Table T8-2: Second winning streak of A4G6

A2G9 winning streak 1
D. taken D. given Ally Squad Max. dist. Cooldown Edge

398 480 1.40801e+006 1.574e+006 -761798 281321 298668
362 480 1.40872e+006 1.57429e+006 -756848 287031 305837
400 480 1.4091e+006 1.57471e+006 -752924 288704 310040
400 420 1.40933e+006 1.57481e+006 -749240 288771 312032
400 360 1.40947e+006 1.57496e+006 -745253 289079 313754
400 400 1.40982e+006 1.57511e+006 -742978 290117 314484
400 440 1.40994e+006 1.57522e+006 -739405 290281 316040
368 480 1.41033e+006 1.57547e+006 -733273 293577 323478
282 480 1.4105e+006 1.57584e+006 -802858 293081 311030

Table T8-3: First winning streak of A2G9

8.6 Winning Streak 71

A2G9 winning streak 2
D. taken D. given Ally Squad Max. dist. Cooldown Edge

374 480 894888 4.65666e+006 -1.94865e+006 12333.4 -96592.9
238 480 895250 4.65597e+006 -1.93662e+006 14373.5 -92902.4
400 300 893479 4.65594e+006 -1.99003e+006 12629.4 -114838
398 480 892553 4.65602e+006 -2.00792e+006 12309.4 -119357
400 280 892857 4.6556e+006 -1.99505e+006 12454.5 -116666
400 480 892257 4.6547e+006 -2.0309e+006 11716.2 -124105

Table T8-4: Second winning streak of A2G9

72 Appendices 8

8.7 Reinforcement Learning Field Summary

double const alpha
The α value of the Q̂f function updating rules.

double const gamma
The γ value of the Q̂f function updating rules.

double const startingEnemies
Number of enemy units (manual input).

double const startingEnemyMaxHealth
Maximum Enemy Health (manual input).

double const startingUnits
Number of units (manual input).

double const startingUnitMaxHealth
Maximum Health (manual input).

double const c1
the C1 value of the reward function, set to -180, coefficient
for the number of units.

double const c2
the C2 value of the reward function, set to -1, coefficient
for the amount of health lost.

double const c3
the C3 value of the reward function, set to 2, coefficient for
the damage dealt.

double const c4
the C4 value of the reward function, set to 40, coefficient
for the number of kills.

double const c5
the C5 value of the reward function, set to -0.025, coefficient for
the frame count inside a game (time).

double[] liveBuffer
Array used for saving the different Q̂f updating values, its
purpose is to optimize the test d data saving (to files) to only a
few occurrences throughout the game.

int liveCount
Counter for controlling the liveBuffer.

struct Weights weights{double FORCEALLY, double
FORCESQUAD, double FORCEMAXDIST, dou-
ble FORCECOOLDOWN, double FORCEEDGE}
Struct used to save all the values of the fi’s in the Q̂f
function throughout all the calculations in the game.

8.7 Reinforcement Learning Field Summary 73

Method Summary

static double CalculateTheta(double theta, double reward, dou-
ble currQ, double nextQ, double derivative)
Returns the value of the updating rule for the current coefficient
fi of the Q̂f function.

static double CalculateReward(std::set<BWAPI::Unit*>squad)
Returns the value of the reward function R(s) = C1numberOfUnits +
C2healthLost+ C3damageDealt+ C4numberOfKills+ C5time.

static void LoadWeightsFromFile()
Loads the weights (f) of the Q̂f function into the weights field.

static void SaveCurrentWeightsToFile()
Saves the last weights (f) of the Q̂f function into the weight’s
file.

static void WriteLiveValue(double value)
Writes a value into the array liveBuffer for future use in the
calculations.

static double* GetLiveBuffer()
Returns the liveBuffer array.

static int GetLiveCount()
Returns the liveCount value that indicates how many numbers
have been saved in the liveBuffer.

static void ClearLiveBuffer()
Clears the current values in the liveBuffer and initializes liveCount
to 0.

static void WriteToDataFiles()
Saves game data into files for future analysis. It saves the game
count, remaining health, remaining enemy health, remaining squad size,
remaining number of enemies. It is only to be used at the end of each
game.

static double GetForceAlly()
Returns the value of weights.FORCEALLY.

static double GetForceSquad()
Returns the value of weights.FORCESQUAD.

static double GetForceMaxDist()
Returns the value of weights.FORCEMAXDIST.

static double GetForceCooldown()
Returns the value of weights.FORCECOOLDOWN.

static double GetForceEdge()
Returns the value of weights.FORCEEDGE.

static void SetForceAlly(double ally)
Sets the value of weights.FORCEALLY to ally.

static void SetForceSquad(double squad)
Sets the value of weights.FORCESQUAD to squad.

static void SetForceMaxDist(double mde)
Sets the value of weights.FORCEMAXDIST to mde.

static void SetForceCooldown(double cool)
Sets the value of weights.FORCECOOLDOWN to cool.

static void SetForceEdge(double edge)
Sets the value of weights.FORCEEDGE to edge.

Bibliography

[1] Team Liquid. Build order. Wiki article, September 2011. 4

[2] Vulture. Wiki article. 8

[3] Michael A. Goodrich. Potential fields tutorial. 11, 12

[4] Lynne Parker. Potential fields. 13

[5] Stuart Russell and Peter Norvig. Artificial intelligence a modern approach 2nd
edition. 16, 17, 18, 19

[6] Tom M. Mitchel. Machine learning, March 1997. 16, 17, 18, 19

[7] Finn V. Jenen and Thomas D. Nielsen. Bayesian networks and decision graphs.
Book, 2007. 22

[8] The decision making tree - a simple way to visualize a decision. 23

[9] Broodwar application programming interface. 29

[10] An api for creating and altering bayesian network. 29

	Contents
	Introduction
	Purpose
	Problem Statement
	Overview

	Analysis
	Basic Game Rules
	Important Techniques
	Terran Tactics
	Bot Analysis
	Unit Analysis

	Design
	Bot Managers
	Potential Fields
	Functions for the Potential Fields
	Agent Learning
	Application of Generalization of Q-Learning
	Bayesian Networks and Decision Trees
	Designing Bayesian Networks for Prediction
	Design Summary

	Implementation
	Class BayesianNetwork
	Managers
	Implementing Potential Fields
	 -Learning

	Tests
	Test Without Reinforcement Learning and Potential Fields
	Test Using the Potential Fields Without Reinforcement Learning
	Comparing and Values
	Convergence Analysis
	Spawn Prediction Test
	Build Order Prediction Test

	Conclusion
	Future work
	Future Work on Potential Fields
	Future Work on Reinforcement Learning
	Future Work on Prediction Networks

	Appendices
	Picture of a Normal Game
	A9G2
	A6G4
	A4G6
	A2G9
	Winning Streak
	Reinforcement Learning Field Summary

	Bibliography

